Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jostmeier, Thorben

  • Google
  • 4
  • 8
  • 74

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2018Thermochromic modulation of surface plasmon polaritons in vanadium dioxide nanocomposites23citations
  • 2016Thermochromic modulation of surface plasmon polaritons in vanadium dioxide nanocomposites23citations
  • 2016GaN- and VO 2-based nanostructures: physics and photonic applicationscitations
  • 2014Optically imprinted reconfigurable photonic elements in a VO2 nanocomposite28citations

Places of action

Chart of shared publication
Mangold, Hans Moritz
1 / 1 shared
Karl, Helmut
3 / 5 shared
Krenner, Hubert J.
3 / 4 shared
Ruppert, Claudia
1 / 1 shared
Betz, Markus
3 / 3 shared
Zimmer, Johannes
3 / 9 shared
Mangold, Moritz
1 / 1 shared
Ruppert, C.
1 / 1 shared
Chart of publication period
2018
2016
2014

Co-Authors (by relevance)

  • Mangold, Hans Moritz
  • Karl, Helmut
  • Krenner, Hubert J.
  • Ruppert, Claudia
  • Betz, Markus
  • Zimmer, Johannes
  • Mangold, Moritz
  • Ruppert, C.
OrganizationsLocationPeople

article

Thermochromic modulation of surface plasmon polaritons in vanadium dioxide nanocomposites

  • Jostmeier, Thorben
  • Karl, Helmut
  • Mangold, Moritz
  • Krenner, Hubert J.
  • Ruppert, C.
  • Betz, Markus
  • Zimmer, Johannes
Abstract

We propose and implement a new concept for thermochromic plasmonic elements. It is based on vanadium dioxide (VO2) nanocrystals located in the near field of surface plasmon polaritons supported by an otherwise unstructured gold thin film. When the VO2 undergoes the metal-insulator phase transition, the coupling conditions for conversion of light into propagating surface plasmon polaritons change markedly. In particular, we realize thermochromic plasmonic grating couplers with substantial switching contrast as well as tunable plasmonic couplers in a Kretschmann configuration. The use of VO2 nanocrystals permits highly repetitive switching and room temperature operation. Simulations based on the actual dielectric function of our VO2 nanocrystals agree well with the experiment.

Topics
  • nanocomposite
  • impedance spectroscopy
  • surface
  • phase
  • experiment
  • thin film
  • simulation
  • gold
  • phase transition
  • vanadium