Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Huber, S. P.

  • Google
  • 1
  • 5
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Subwavelength single layer absorption resonance antireflection coatings17citations

Places of action

Chart of shared publication
Yakshin, A. E.
1 / 4 shared
Van De Kruijs, Robbert
1 / 22 shared
Boller, Klaus-Jochen
1 / 2 shared
Bijkerk, F.
1 / 11 shared
Zoethout, E.
1 / 6 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Yakshin, A. E.
  • Van De Kruijs, Robbert
  • Boller, Klaus-Jochen
  • Bijkerk, F.
  • Zoethout, E.
OrganizationsLocationPeople

article

Subwavelength single layer absorption resonance antireflection coatings

  • Huber, S. P.
  • Yakshin, A. E.
  • Van De Kruijs, Robbert
  • Boller, Klaus-Jochen
  • Bijkerk, F.
  • Zoethout, E.
Abstract

We present theoretically derived design rules for an absorbingresonance antireflection coating for the spectral range of 100−400 nm, appliedhere on top of a molybdenum-silicon multilayer mirror (Mo/Si MLM)as commonly used in extreme ultraviolet lithography. The design rules foroptimal suppression are found to be strongly dependent on the thicknessand optical constants of the coating. For wavelengths below λ ∼ 230 nm,absorbing thin films can be used to generate an additional phase shift andcomplement the propagational phase shift, enabling full suppression alreadywith film thicknesses far below the quarter-wave limit. Above λ ∼ 230 nm,minimal absorption (k &lt; 0.2) is necessary for low reflectance and the minimumrequired layer thickness increases with increasing wavelength slowlyconverging towards the quarter-wave limit.As a proof of principle, Si<sub>x</sub>C<sub>y</sub>N<sub>z</sub> thin films were deposited that exhibitoptical constants close to the design rules for suppression around 285nm. The thin films were deposited by electron beam co-deposition ofsilicon and carbon, with N+ ion implantation during growth and analyzedwith variable angle spectroscopic ellipsometry to characterize the opticalconstants. We report a reduction of reflectance at λ = 285 nm, from 58%to 0.3% for a Mo/Si MLM coated with a 20 nm thin film of Si<sub>0.52</sub>C<sub>0.16</sub>N<sub>0.29</sub>.

Topics
  • Deposition
  • impedance spectroscopy
  • molybdenum
  • Carbon
  • phase
  • thin film
  • Silicon
  • ellipsometry
  • lithography