People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stenger, Nicolas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Experimental realization of deep sub-wavelength confinement of light in a topology-optimized InP nanocavitycitations
- 2023Photon superbunching in cathodoluminescence of excitons in WS 2 monolayercitations
- 2023Photon superbunching in cathodoluminescence of excitons in WS2 monolayercitations
- 2019Shining Light on Sulfide Perovskites: LaYS 3 Material Properties and Solar Cellscitations
- 2019Shining Light on Sulfide Perovskites: LaYS3 Material Properties and Solar Cellscitations
- 2017Near- and far field spectroscopy of semi-continuous gold films with optically induced anisotropy.
- 2017Near- and far field spectroscopy of semi-continuous gold films with optically induced anisotropy.
- 2017Optical reconfiguration and polarization control in semicontinuous gold films close to the percolation threshold
- 2017Optical reconfiguration and polarization control in semicontinuous gold films close to the percolation threshold
- 2016Higher-order surface plasmons resonances and their disappearance in fewnanometer silver nanoparticles
- 2014Pattern recognition approach to quantify the atomic structure of graphenecitations
- 2014Experimental study of nonlocal effects in plasmonic structures with Electron Energy Loss Spectroscopy
- 2013Blueshift of the surface plasmon resonance studied with Electron Energy Loss Spectroscopy (EELS)
- 2013Blueshift of the surface plasmon resonance in silver nanoparticles: substrate effectscitations
Places of action
Organizations | Location | People |
---|
article
Blueshift of the surface plasmon resonance in silver nanoparticles: substrate effects
Abstract
We study the blueshift of the surface plasmon (SP) resonance energy of isolated Ag nanoparticles with decreasing particle diameter, which we recently measured using electron energy loss spectroscopy (EELS) [1]. As the particle diameter decreases from 26 down to 3.5 nm, a large blueshift of 0.5 eV of the SP resonance energy is observed. In this paper, we base our theoretical interpretation of our experimental findings on the nonlocal hydrodynamic model, and compare the effect of the substrate on the SP resonance energy to the approach of an effective homogeneous background permittivity. We derive the nonlocal polarizability of a small metal sphere embedded in a homogeneous dielectric environment, leading to the nonlocal generalization of the classical Clausius–Mossotti factor. We also present an exact formalism based on multipole expansions and scattering matrices to determine the optical response of a metal sphere on a dielectric substrate of finite thickness, taking into account retardation and nonlocal effects. We find that the substrate-based calculations show a similar-sized blueshift as calculations based on a sphere in a homogeneous environment, and that they both agree qualitatively with the EELS measurements.