People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Caglayan, Humeyra
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Ultrafast optical properties of stoichiometric and non-stoichiometric refractory metal nitrides TiNx, ZrNx, and HfNxcitations
- 2023Deterministic Polymorphic Engineering of MoTe2 for Photonic and Optoelectronic Applicationscitations
- 2023Deterministic Polymorphic Engineering of MoTe2 for Photonic and Optoelectronic Applicationscitations
- 2023New Horizons in Near-Zero Refractive Index Photonics and Hyperbolic Metamaterialscitations
- 2022Self-Rolling SiO2/Au Based Epsilon-Near-Zero Metamaterialscitations
- 2022Mechanism of emitters coupled with a polymer-based hyperbolic metamaterialcitations
- 2021Loss compensated extraordinary transmission in hybridized plasmonic nanocavitiescitations
- 2020Hot electron dynamics in ultrafast multilayer epsilon-near-zero metamaterialscitations
- 2020Loss compensated extraordinary transmission in hybridized plasmonic nanocavitiescitations
- 2018Highly-Sensitive Refractive Index Sensing by Near-infrared Metatronic Nanocircuitscitations
- 2018Enhanced tunability of metasurfaces with graphene
- 2018Electrically switchable metadevices via graphenecitations
- 2018Electrically switchable metadevices via graphene.
- 2014Solution-Processed Phase-Change VO2 Metamaterials from Colloidal Vanadium Oxide (VOx) Nanocrystalscitations
- 2013Chemically tailored dielectric-to-metal transition for the design of metamaterials from nanoimprinted colloidal nanocrystalscitations
- 2013Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO)citations
- 2012Composite chiral metamaterials with negative refractive index and high values of the figure of meritcitations
- 2008Experimental observation of cavity formation in composite metamaterialscitations
- 2006Designing materials with desired electromagnetic propertiescitations
Places of action
Organizations | Location | People |
---|
article
Composite chiral metamaterials with negative refractive index and high values of the figure of merit
Abstract
<p>A composite chiral metamaterial (CCMM) is designed and studied both numerically and experimentally. The CCMM is constructed by the combination of a continuous metallic wires structure and a purely chiral metamaterial (CMM) that consists of conjugated Rosettes. For the CMM, only very small, useful bands of negative index can be obtained for circularly polarized waves. These bands are all above the chiral resonance frequencies because of the high value of the effective parameter of relative permittivity å. After the addition of the continuous metallic wires, which provide negative permittivity, the high value of å can be partially compensated. Thus, a negative index band for the left circularly polarized wave that is below the chiral resonance frequency is obtained for the CCMM. At the same time, a negative index band for the right circularly polarized wave that is above the chiral resonance frequency is also obtained. Furthermore, both negative index bands correspond to the transmission peaks and have high values of the figure of merit. Therefore, the CCMM design that is proposed here is more suitable than the CMM for the construction of chiral metamaterials with a negative index.</p>