People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Huang, Chung-Che
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (38/38 displayed)
- 2023Conformal CVD-grown MoS2 on three-dimensional woodpile photonic crystals for photonic bandgap engineeringcitations
- 2022Low energy switching of phase change materials using a 2D thermal boundary layercitations
- 2020Enhancement of nonlinear functionality of step-index silica fibers combining thermal poling and 2D materials depositioncitations
- 2019Chalcogenide materials and applications: from bulk to 2D (Invited Talk)
- 2019Chalcogenide materials and applications: from bulk to 2D (Invited Talk)
- 2019Mechanochromic reconfigurable metasurfacescitations
- 2019Mechanochromic reconfigurable metasurfacescitations
- 2019Tuning MoS2 metamaterial with elastic strain
- 2019Tuning MoS 2 metamaterial with elastic strain
- 2018Optical-resonance-enhanced nonlinearities in a MoS2-coated single-mode fibercitations
- 2018Fabrication of micro-scale fracture specimens for nuclear applications by direct laser writing
- 2017Wafer scale pre-patterned ALD MoS 2 FETs
- 2017Wafer scale spatially selective transfer of 2D materials and heterostructures
- 2017Wafer scale spatially selective transfer of 2D materials and heterostructures
- 2017Wafer scale pre-patterned ALD MoS2 FETs
- 2017Chemical vapor deposition and Van der Waals epitaxy for wafer-scale emerging 2D transition metal di-chalcogenides
- 2017A lift-off method for wafer scale hetero-structuring of 2D materials
- 2016Next generation chalcogenide glasses for visible and IR imaging
- 2016Advanced CVD technology for emerging transition metal di-chalcogenides
- 2015Fabrication of tin sulphide and emerging transition metal di-chalcogenides by CVD
- 2015CVD-grown tin sulphide for thin film solar cell devices
- 2014Manufacturing high purity chalcogenide glass
- 2013Crystallization study of the CuSbS2 chalcogenide material for solar applications
- 2012Laser-induced crystalline optical waveguide in glass fiber formatcitations
- 2011Novel methods for the preparation of high purity chalcogenide glass for optical fiber applications
- 2010Switching metamaterials with electronic signals and electron-beam excitations
- 2010Metamaterial electro-optic switch of nanoscale thicknesscitations
- 2010Chalcogenide glasses for photonics device applications
- 2010Chalcogenide plasmonic metamaterial switches
- 2010Active chalcogenide glass photonics and electro-optics for the mid-infrared
- 2009Chalcogenide glass metamaterial optical switch
- 2009Focused ion beam etched ring-resonator in CVD-grown Ge-Sb-S thin films
- 2007Antimony germanium sulphide amorphous thin films fabricated by chemical vapour depositioncitations
- 2007Electrical phase change of Ga:La:S:Cu filmscitations
- 2005Chalcogenide glass thin films and planar waveguidescitations
- 2004Deposition and characterization of germanium sulphide glass planar waveguidescitations
- 2003Properties and application of germanium sulphide glass
- 2003Through thick and thin: recent developments with chalcogenide films
Places of action
Organizations | Location | People |
---|
article
Laser-induced crystalline optical waveguide in glass fiber format
Abstract
We report on the first fabrication of a glass fiber based laserinduced crystalline waveguide. The glass and crystal are based on the stoichiometric composition of (La,Yb)BGeO<sub>5</sub>. A laser induced waveguide has been fabricated on the surface of a ribbon glass fiber using milliwatt-level continuous wave UV laser radiation at a fast scanning speed. Evidence of crystallinity in the created structure was observed using micro-Raman spectroscopy and scanning electron microscopy. Preliminary investigations on the waveguiding behavior and the nonlinear performance in the crystalline waveguide are reported.<br/>