People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Grillet, Christian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Efficient Optimization of High‐Quality Epitaxial Lithium Niobate Thin Films by Chemical Beam Vapor Deposition: Impact of Cationic Stoichiometrycitations
- 2023Efficient Optimization of High‐Quality Epitaxial Lithium Niobate Thin Films by Chemical Beam Vapor Deposition: Impact of Cationic Stoichiometrycitations
- 2019Post processing dispersion trimming for on-chip mid-infrared supercontinuum generation
- 2015Mid-IR integrated photonics for sensing applicationscitations
- 2012Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguidescitations
- 2011Third-harmonic generation in engineered slow light photonic crystal waveguides in chalcogenide glasses
- 2011Third-Harmonic generation in slow-light chalcogenide glass photonic crystal waveguidescitations
- 2011Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguidescitations
- 2010Chalcogenide glass photonic crystalscitations
- 2010Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavitiescitations
- 2009Photoinduced high-Q cavities in chalcogenide photonic crystals
- 2009High-Q photonic crystal chalcogenide cavities by photosensitive post processing
- 2009High-Q photonic crystal chalcogenide cavities by photosensitive post processing
- 2009Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystalscitations
- 2008Chalcogenide glass photonic crystalscitations
- 2008Characterizing photonic crystal waveguides with an expanded k-space evanescent coupling techniquecitations
- 2008Photo-induced cavities in chalcogenide photonic crystals
- 2007Photosensitive post tuning of chalcogenide photonic crystal waveguidescitations
- 2006Characterization and modeling of Fano resonances in chalcogenide photonic crystal membranescitations
- 2006Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowirescitations
- 2006Characterization and modeling of Fano resonances in chalcogenide glass photonic crystal membranescitations
- 2005Fabrication of photonic crystal membranes in chalcogenide glasses by focused ion beam milling
Places of action
Organizations | Location | People |
---|
article
Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities
Abstract
We investigate the photosensitive and thermo-optic nonlinear properties of chalcogenide glass photonic crystal (PhC) cavities at telecommunications wavelengths. We observe a photosensitive refractive index change in AMTIR-1 (Ge<sub>33</sub>As<sub>12</sub>Se<sub>55</sub>) material in the near-infrared, which is enhanced by light localization in the PhC cavity and manifests in a permanent blue-shift of the nanocavity resonance. Thermo-optic non-linear properties are thoroughly investigated by i) carrying out thermal bistable switching experiments, from which we determined thermal switching times of 63μs and 93μs for switch on and switch off respectively and ii) by studying heating of the cavity with a high peak power pulsed laser input, which shows that two-photon absorption is the dominant heating mechanism. Our measurements and analysis highlight the detrimental impact of near-infrared photosensitivity and two-photon absorption on cavity based nonlinear optical switching schemes. We conclude that glass compositions with lower two-photon absorption and more stable properties (reduced photosensitivity) are therefore required for nonlinear applications in chalcogenide photonic crystal cavities.