People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Guina, Mircea
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (36/36 displayed)
- 2024Bridging the gap between surface physics and photonicscitations
- 2024Detection of BiGa hetero-antisites at Ga(As,Bi)/(Al,Ga)As interfacescitations
- 2023Tuneable Nonlinear Spin Response in a Nonmagnetic Semiconductor
- 2022Luminescent (Er,Ho)2O3 thin films by ALD to enhance the performance of silicon solar cellscitations
- 2021Luminescent (Er,Ho)2O3 thin films by ALD to enhance the performance of silicon solar cellscitations
- 2021Room-temperature electron spin polarization exceeding 90% in an opto-spintronic semiconductor nanostructure via remote spin filteringcitations
- 2021Room-temperature electron spin polarization exceeding 90% in an opto-spintronic semiconductor nanostructure via remote spin filteringcitations
- 2019Optimization of Ohmic Contacts to p-GaAs Nanowirescitations
- 2019Optimization of Ohmic Contacts to p-GaAs Nanowirescitations
- 2019Thermophotonic cooling in GaAs based light emitterscitations
- 2019V-groove etched 1-eV-GaInNAs nipi solar cellcitations
- 2019Observation of local electroluminescent cooling and identifying the remaining challenges
- 2019Gradients of Be-dopant concentration in self-catalyzed GaAs nanowirescitations
- 2019Influence of ex-situ annealing on the properties of MgF2 thin films deposited by electron beam evaporationcitations
- 2018Surface doping of GaxIn1−xAs semiconductor crystals with magnesiumcitations
- 2017The role of epitaxial strain on the spontaneous formation of Bi-rich nanostructures in Ga(As,Bi) epilayers and quantum wellscitations
- 2017Structured metal/polymer back reflectors for III-V solar cells
- 2017Photo-acoustic Spectroscopy of Resonant Absorption in III-V Semiconductor Nanowires
- 2016High-efficiency GaInP/GaAs/GaInNAs solar cells grown by combined MBE-MOCVD techniquecitations
- 2016Determination of composition and energy gaps of GaInNAsSb layers grown by MBEcitations
- 2016Optical Energy Transfer and Loss Mechanisms in Coupled Intracavity Light Emitterscitations
- 2016Combined MBE-MOCVD process for high-efficiency multijunction solar cells
- 2016High efficiency multijunction solar cells: Electrical and optical properties of the dilute nitride sub-junctions
- 2016Spontaneous formation of three-dimensionally ordered Bi-rich nanostructures within GaAs1-xBix/GaAs quantum wellscitations
- 2015Defects in dilute nitride solar cells
- 2015Spontaneous formation of nanostructures by surface spinodal decomposition in GaAs1-xBix epilayerscitations
- 2015Dilute nitrides for boosting the efficiency of III-V multijunction solar cells
- 2015Detecting lateral composition modulation in dilute Ga(As,Bi) epilayerscitations
- 2015Te-doping of self-catalyzed GaAs nanowirescitations
- 2015Oxidation of the GaAs semiconductor at the Al2O3/GaAs junctioncitations
- 2015Oxidation of the GaAs semiconductor at the Al2O3/GaAs junctioncitations
- 2014Unveiling and controlling the electronic structure of oxidized semiconductor surfaces: Crystalline oxidized InSb(100)(1 × 2)-Ocitations
- 2012Dilute nitride and GaAs n-i-p-i solar cellscitations
- 2011Characterization of InGaAs and InGaAsN semiconductor saturable absorber mirrors for high-power mode-locked thin-disk laserscitations
- 2011Ultrathin (1*2)-Sn layer on GaAs(100) and InAs(100) substrates:A catalyst for removal of amorphous surface oxidescitations
- 2008Passively Q-switched Tm3+, Ho3+-doped silica fiber laser using a highly nonlinear saturable absorber and dynamic gain pulse compressioncitations
Places of action
Organizations | Location | People |
---|
article
Passively Q-switched Tm3+, Ho3+-doped silica fiber laser using a highly nonlinear saturable absorber and dynamic gain pulse compression
Abstract
<p>We demonstrate a compact core-pumped 2 μm Tm<sup>3+</sup>, Ho <sup>3+</sup>-doped all-fiber laser passively Q-switched with an antimony-based saturable absorber. The 20 ns pulses are the shortest Q-switched pulses from a fiber laser operating beyond 1850 nm and were produced at a repetition rate of 57 kHz and pulse energy of 15 μJ using a short-length (4 ns) cavity. The large absorber modulation depth of ∼70% together with transient gain compression is shown to provide an efficient mechanism for Q-switched pulse shortening.</p>