People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Taeed, Vahid G.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2008Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processingcitations
- 2008Chalcogenide glass photonic chipscitations
- 2007Highly nonlinear chalcogenide fibres for all-optical signal processingcitations
- 2007Chalcogenide glass advanced for all-optical processing
- 2007Broadband wavelength conversion at 40 Gb/s using long serpentine As 2S3 planar waveguidescitations
- 2007Highly nonlinear single-mode chalcogenide fibres for signal processing
- 2007Higher-order mode grating devices in As2S3 chalcogenide glass rib waveguidescitations
- 2007Ultrafast all-optical chalcogenide glass photonic circuitscitations
- 2006Self-phase modulation-based integrated optical regeneration in chalcogenide waveguidescitations
- 2006All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguidescitations
- 2006High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometercitations
Places of action
Organizations | Location | People |
---|
article
Higher-order mode grating devices in As2S3 chalcogenide glass rib waveguides
Abstract
<p>We report on the design and fabrication of high-quality long-period gratings in chalcogenide glass (As<sub>2</sub>S<sub>3</sub>) rib waveguides utilizing the strong photosensitivity. Higher-order modes of the rib waveguides are analyzed by inspection of the spectra of Bragg gratings written into these waveguides. Based on these measurements, we infer the effective indices of higher-order modes, which are in good agreement with modeling results using a beam propagation method. High-quality long-period gratings are then designed and written into the rib waveguides using a simple shadow mask technique. Coupling the fundamental to the HE<sub>02</sub> mode strong resonances of up to ∼20 dB depths are obtained. The gratings have a length of L=26 mm and a period of ∧ =86 μm. In situ monitoring of the writing process allows the growth dynamics of the grating to be studied. A theoretical fit to the measured transmission curve gives an average index change of ∼10<sup>-3</sup>.</p>