Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chigine, Andrea

  • Google
  • 1
  • 11
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Constrained models for optical absorption tomography14citations

Places of action

Chart of shared publication
Wilson, David
1 / 1 shared
Lengden, Michael
1 / 2 shared
Polydorides, Nick
1 / 2 shared
Humphries, Gordon Samuel
1 / 1 shared
Tsekenis, Alex
1 / 1 shared
Benoy, Thomas
1 / 1 shared
Dimiccoli, Luca
1 / 1 shared
Fisher, Edward
1 / 1 shared
Wright, Paul
1 / 2 shared
Mccann, Hugh
1 / 2 shared
Johnstone, Walter
1 / 2 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Wilson, David
  • Lengden, Michael
  • Polydorides, Nick
  • Humphries, Gordon Samuel
  • Tsekenis, Alex
  • Benoy, Thomas
  • Dimiccoli, Luca
  • Fisher, Edward
  • Wright, Paul
  • Mccann, Hugh
  • Johnstone, Walter
OrganizationsLocationPeople

article

Constrained models for optical absorption tomography

  • Wilson, David
  • Lengden, Michael
  • Polydorides, Nick
  • Humphries, Gordon Samuel
  • Tsekenis, Alex
  • Benoy, Thomas
  • Dimiccoli, Luca
  • Fisher, Edward
  • Wright, Paul
  • Mccann, Hugh
  • Johnstone, Walter
  • Chigine, Andrea
Abstract

We consider the inverse problem of concentration imaging in optical absorption tomography with limited data sets. The measurement setup involves simultaneous acquisition of near infrared wavelength modulated spectroscopic measurements from a small number of pencil beams equally distributed among six projection angles surrounding the plume. We develop an approach for image reconstruction that involves constraining the value of the image to the conventional concentration bounds and a projection into low-dimensional subspaces to reduce the degrees of freedom in the inverse problem. Effectively, by reparameterising the forward model we impose simultaneously spatial smoothness and a choice between three types of inequality constraints, namely positivity, boundedness and logarithmic boundedness in a simple way that yields an unconstrained optimisation problem in a new set of surrogate parameters. Testing this numerical scheme with simulated and experimental phantom data indicates that the combination of affine inequality constraints and subspace projection leads to images that are qualitatively and quantitatively superior to unconstrained regularised reconstructions. This improvement is more profound in targeting concentration profiles of small spatial variation. We present images and convergence graphs from solving these inverse problems using Gauss-Newton's algorithm to demonstrate the performance and convergence of our method.

Topics
  • impedance spectroscopy
  • tomography