Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Forsyth, Alan

  • Google
  • 1
  • 8
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Broadband infrared absorber based on a sputter deposited hydrogenated carbon multilayer enhancing MEMS-based CMOS thermopile performance3citations

Places of action

Chart of shared publication
Fleming, Lewis
1 / 7 shared
James, Allan
1 / 1 shared
Hutson, David
1 / 6 shared
Bruckshaw, Suzanne
1 / 1 shared
Ahmadzadeh, Sam
1 / 6 shared
Gibson, Desmond
1 / 23 shared
Song, Shigeng
1 / 8 shared
Wells, Stephen
1 / 9 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Fleming, Lewis
  • James, Allan
  • Hutson, David
  • Bruckshaw, Suzanne
  • Ahmadzadeh, Sam
  • Gibson, Desmond
  • Song, Shigeng
  • Wells, Stephen
OrganizationsLocationPeople

article

Broadband infrared absorber based on a sputter deposited hydrogenated carbon multilayer enhancing MEMS-based CMOS thermopile performance

  • Fleming, Lewis
  • James, Allan
  • Hutson, David
  • Forsyth, Alan
  • Bruckshaw, Suzanne
  • Ahmadzadeh, Sam
  • Gibson, Desmond
  • Song, Shigeng
  • Wells, Stephen
Abstract

Based on pulsed DC sputter deposition of hydrogenated carbon, an absorber optical coating with maximized broadband infrared absorptance is reported. Enhanced broadband (2.5–20 µm) infrared absorptance (>90%) with reduced infrared reflection is achieved by combining a low-absorptance antireflective (hydrogenated carbon) overcoat with a broadband-absorptance carbon underlayer (nonhydrogenated). The infrared optical absorptance of sputter deposited carbon with incorporated hydrogen is reduced. As such, hydrogen flow optimization to minimize reflection loss, maximize broadband absorptance, and achieve stress balance is described. Application to complementary metal-oxide-semiconductor (CMOS) produced microelectromechanical systems (MEMS) thermopile device wafers is described. A 220% increase in thermopile output voltage is demonstrated, in agreement with modeled prediction.

Topics
  • Deposition
  • impedance spectroscopy
  • Carbon
  • semiconductor
  • Hydrogen