Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Devlin, Mark J.

  • Google
  • 2
  • 40
  • 30

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021The Simons Observatory: metamaterial microwave absorber and its cryogenic applications.30citations
  • 2018Design and Characterization of a Balloon-Borne Diffraction-Limited Submillimeter Telescope Platform for BLAST-TNGcitations

Places of action

Chart of shared publication
Wollack, Edward
1 / 17 shared
Hattori, Makoto
1 / 2 shared
Gudmundsson, Jon E.
1 / 1 shared
Kofman, Anna
1 / 1 shared
Thornton, Robert
1 / 1 shared
Harrington, Kathleen
1 / 1 shared
Chesmore, Grace E.
1 / 1 shared
Teply, Grant
1 / 1 shared
Zannoni, Mario
1 / 1 shared
Bazarko, A. O.
1 / 1 shared
Kusaka, Akito
1 / 2 shared
Kiuchi, Kenji
1 / 1 shared
Adachi, Shunsuke
1 / 2 shared
Ali, Aamir
1 / 2 shared
Zhu, Ningfeng
1 / 1 shared
Matsuda, Frederick
1 / 1 shared
Devlin, Tom
1 / 1 shared
Gallardo, Patricio A.
1 / 2 shared
Coppi, Gabriele
1 / 1 shared
Mcmahon, Jeff
1 / 2 shared
Suzuki, Aritoki
1 / 1 shared
Golec, Joseph E.
1 / 1 shared
Nati, Federico
2 / 2 shared
Angile, Francisco E.
1 / 1 shared
Ashton, Peter C.
1 / 1 shared
Catanzaro, Brian
1 / 1 shared
Lourie, Nathan P.
1 / 1 shared
Soler, Juan D.
1 / 1 shared
Romualdez, L. Javier
1 / 1 shared
Williams, Paul A.
1 / 1 shared
Galitzki, Nicholas
1 / 1 shared
Klein, Jeffrey
1 / 1 shared
Gordon, Samuel
1 / 1 shared
Mauskopf, Philip
1 / 2 shared
Dicker, Simon
1 / 1 shared
Didier, Joy
1 / 1 shared
Lowe, Ian
1 / 1 shared
Dober, Bradley
1 / 1 shared
Novak, Giles
1 / 1 shared
Fissel, Laura M.
1 / 1 shared
Chart of publication period
2021
2018

Co-Authors (by relevance)

  • Wollack, Edward
  • Hattori, Makoto
  • Gudmundsson, Jon E.
  • Kofman, Anna
  • Thornton, Robert
  • Harrington, Kathleen
  • Chesmore, Grace E.
  • Teply, Grant
  • Zannoni, Mario
  • Bazarko, A. O.
  • Kusaka, Akito
  • Kiuchi, Kenji
  • Adachi, Shunsuke
  • Ali, Aamir
  • Zhu, Ningfeng
  • Matsuda, Frederick
  • Devlin, Tom
  • Gallardo, Patricio A.
  • Coppi, Gabriele
  • Mcmahon, Jeff
  • Suzuki, Aritoki
  • Golec, Joseph E.
  • Nati, Federico
  • Angile, Francisco E.
  • Ashton, Peter C.
  • Catanzaro, Brian
  • Lourie, Nathan P.
  • Soler, Juan D.
  • Romualdez, L. Javier
  • Williams, Paul A.
  • Galitzki, Nicholas
  • Klein, Jeffrey
  • Gordon, Samuel
  • Mauskopf, Philip
  • Dicker, Simon
  • Didier, Joy
  • Lowe, Ian
  • Dober, Bradley
  • Novak, Giles
  • Fissel, Laura M.
OrganizationsLocationPeople

article

The Simons Observatory: metamaterial microwave absorber and its cryogenic applications.

  • Wollack, Edward
  • Devlin, Mark J.
  • Hattori, Makoto
  • Gudmundsson, Jon E.
  • Kofman, Anna
  • Thornton, Robert
  • Harrington, Kathleen
  • Chesmore, Grace E.
  • Teply, Grant
  • Zannoni, Mario
  • Bazarko, A. O.
  • Kusaka, Akito
  • Kiuchi, Kenji
  • Adachi, Shunsuke
  • Ali, Aamir
  • Zhu, Ningfeng
  • Matsuda, Frederick
  • Devlin, Tom
  • Gallardo, Patricio A.
  • Coppi, Gabriele
  • Mcmahon, Jeff
  • Suzuki, Aritoki
  • Golec, Joseph E.
  • Nati, Federico
Abstract

Controlling stray light at millimeter wavelengths requires special optical design and selection of absorptive materials that should be compatible with cryogenic operating environments. While a wide selection of absorptive materials exists, these typically exhibit high indices of refraction and reflect/scatter a significant fraction of light before absorption. For many lower index materials such as commercial microwave absorbers, their applications in cryogenic environments are challenging. In this paper, we present a new tool to control stray light: metamaterial microwave absorber tiles. These tiles comprise an outer metamaterial layer that approximates a lossy gradient index anti-reflection coating. They are fabricated via injection molding commercially available carbon-loaded polyurethane (25% by mass). The injection molding technology enables mass production at low cost. The design of these tiles is presented, along with thermal tests to 1 K. Room temperature optical measurements verify their control of reflectance to less than 1% up to 65∘ angles of incidence, and control of wide angle scattering below 0.01%. The dielectric properties of the bulk carbon-loaded material used in the tiles is also measured at different temperatures, confirming that the material maintains similar dielectric properties down to 3 K.

Topics
  • impedance spectroscopy
  • Carbon
  • laser emission spectroscopy
  • injection molding
  • metamaterial