Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Isiyaku, Aliyu Kabiru

  • Google
  • 1
  • 2
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Effects of Laser Radiation on the Optical and Electrical Properties of ITO Thin Films Deposited by RF Sputtering6citations

Places of action

Chart of shared publication
Ali, Ahmad Hadi
1 / 1 shared
Nayan, Nafarizal
1 / 24 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Ali, Ahmad Hadi
  • Nayan, Nafarizal
OrganizationsLocationPeople

article

Effects of Laser Radiation on the Optical and Electrical Properties of ITO Thin Films Deposited by RF Sputtering

  • Ali, Ahmad Hadi
  • Nayan, Nafarizal
  • Isiyaku, Aliyu Kabiru
Abstract

Annealing treatment of transparent conducting oxide (TCO) thin films plays a great role in enhancing the optoelectronic properties of the material. Changes in morphological, optical and electrical properties of indium tin oxide (ITO) thin films deposited by RF sputtering were investigated after exposing the films to Nd:YAG laser radiation. ITO thin films of 158 nm thickness were irradiated with different laser energy; 25 mJ, 75 mJ, 120 mJ and 165 mJ respectively. Atomic force microscopy (AFM) results reveal a smooth surface morphology and enhance grain size as the laser energy increases. Highest optical transmittance value of 96.5 % at 620 nm wavelength was obtained by film treated with 165 mJ laser energy as determined by UV-Vis spectrophotometer. Electrical resistivity measurements as determined by four-point probe show a significant decrease in resistivity and sheet resistance with respect to increasing laser energies. The ITO films optoelectronics properties were enhanced with the film annealed at 165 mJ exhibiting the highest calculated figure of merit. This laser treatment method has effectively fine turned the ITO films properties toward TCO functional properties required for solar cell application.

Topics
  • surface
  • grain
  • resistivity
  • grain size
  • thin film
  • atomic force microscopy
  • annealing
  • tin
  • Indium