Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zloužeová, Kateřina

  • Google
  • 1
  • 5
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021PARTIALLY SINTERED LEAD-FREE CERAMICS FROM PIEZOELECTRIC POWDERS PREPARED VIA CONVENTIONAL FIRING AND SPARK PLASMA SINTERING (SPS) - CHARACTERIZATION OF MICROSTRUCTURE AND DIELECTRIC PROPERTIES3citations

Places of action

Chart of shared publication
Hříbalová, Soňa
1 / 11 shared
Petrasek, Jan
1 / 1 shared
Pabst, Willi
1 / 20 shared
Míka, Martin Havlík
1 / 1 shared
Nečina, Vojtěch
1 / 15 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Hříbalová, Soňa
  • Petrasek, Jan
  • Pabst, Willi
  • Míka, Martin Havlík
  • Nečina, Vojtěch
OrganizationsLocationPeople

article

PARTIALLY SINTERED LEAD-FREE CERAMICS FROM PIEZOELECTRIC POWDERS PREPARED VIA CONVENTIONAL FIRING AND SPARK PLASMA SINTERING (SPS) - CHARACTERIZATION OF MICROSTRUCTURE AND DIELECTRIC PROPERTIES

  • Hříbalová, Soňa
  • Petrasek, Jan
  • Pabst, Willi
  • Míka, Martin Havlík
  • Zloužeová, Kateřina
  • Nečina, Vojtěch
Abstract

This work deals with dielectric properties of lead-free ceramics from piezoelectric powders and focuses on the preparation and characterization of potassium-sodium niobate (K0.5Na0.5NbO3, KNN) and barium titanate (BaTiO3, BT) ceramics. Ceramic samples with different porosity were prepared from commercial KNN and BT powders by conventional firing in air or spark plasma sintering (SPS) at temperatures 600 - 1000 degrees C for KNN and 900 - 1300 degrees C for BT, resulting in partially or fully sintered microstructures. Bulk density, apparent density and open porosity were determined using the Archimedes method and closed and total porosities were calculated on the basis of theoretical densities. For both types of ceramics, the porosity decreases with increasing sintering temperature, and for identical temperatures the porosity of SPS samples is lower than for conventional firing, because the pressure applied during SPS promotes densification. For KNN the influence of SPS on the porosity is much larger than for BT. With increasing SPS temperature KNN exhibits a moderate decrease of the alkali content. The results of dielectric property measurements and their frequency dependence via impedance spectroscopy in the range from 10 or 100 Hz to 1 MHz show that the relative permittivity decreases in all cases with frequency and is usually higher for ceramics prepared via SPS than for conventional firing. This can be explained by the lower porosity and smaller grain size. The absolute values of the relative permittivity at 1 kHz are 134 - 532 (conventional firing) and 148 - 3780 (SPS) for KNN, and 753 - 1801 (conventional firing) and 923 - 10 380 (SPS) for BT ceramics.

Topics
  • density
  • impedance spectroscopy
  • grain
  • grain size
  • dielectric constant
  • Sodium
  • Potassium
  • porosity
  • ceramic
  • sintering
  • densification
  • Barium