People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shakeri, M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2018Free vibration analysis and design optimization of SMA/Graphite/Epoxy composite shells in thermal environmentscitations
- 2016Modeling and analysis of reversible shape memory adaptive panelscitations
- 2015Micro-mechanics of composite with SMA fibers embedded in metallic/polymeric matrix under off-axial loadingscitations
- 2015A simple and efficient 1-D macroscopic model for shape memory alloys considering ferro-elasticity effect
- 2015Micromechanics of shape memory alloy fiber-reinforced composites subjected to multi-axial non-proportional loadingscitations
- 2015Micro-macro thermo-mechanical analysis of axisymmetric shape memory alloy composite cylinderscitations
- 2014Shape control of shape memory alloy composite beams in the post-buckling regimecitations
- 2014Active shape/stress control of shape memory alloy laminated beamscitations
- 2014On the vibration control capability of shape memory alloy composite beamscitations
- 2014A robust three-dimensional phenomenological model for polycrystalline SMAscitations
- 2013An Investigation on Low Velocity Impact Response of Multilayer Sandwich Composite Structurescitations
- 2013A phenomenological SMA model for combined axial-torsional proportional/non-proportional loading conditionscitations
Places of action
Organizations | Location | People |
---|
article
A simple and efficient 1-D macroscopic model for shape memory alloys considering ferro-elasticity effect
Abstract
<p>In this paper, a simple and efficient phenomenological macroscopic one-dimensional model is proposed which is able to simulate main features of shape memory alloys (SMAs) particularly ferro-elasticity effect. The constitutive model is developed within the framework of thermodynamics of irreversible processes to simulate the one-dimensional behavior of SMAs under uniaxial simple tension-compression as well as pure torsion+/-loadings. Various functions including linear, cosine and exponential functions are introduced in a unified framework for the martensite transformation kinetics and an analytical description of constitutive equations is presented. The presented model can be used to reproduce primary aspects of SMAs including transformation/orientation of martensite phase, shape memory effect, pseudo-elasticity and in particular ferro-elasticity. Experimental results available in the open literature for uniaxial tension, torsion and bending tests are simulated to validate the present SMA model in capturing the main mechanical characteristics. Due to simplicity and accuracy, it is expected the present SMA model will be instrumental toward an accurate analysis of SMA components in various engineering structures particularly when the ferro-elasticity is obvious.</p>