People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Merzouki, Tarek
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024An efficient numerical model for free vibration of temperature-dependent porous FG nano-scale beams using a nonlocal strain gradient theory
- 2023Bending Responses of Bi-Directional Advanced Composite Nanobeams Using Higher Order Nonlocal Strain Gradient Theorycitations
- 2022Elastic stability of functionally graded graphene reinforced porous nanocomposite beams using two variables shear deformation
- 2022Bending analysis of functionally graded porous nanocomposite beams based on a non-local strain gradient theorycitations
- 2021A robust method for the reliability-based design optimization of shape memory alloy actuatorcitations
- 2020Surrogate models for uncertainty analysis of micro-actuatorcitations
- 2019An approach for the reliability-based design optimization of shape memory alloy structurecitations
- 2018Uncertainty analysis of an actuator for a shape memory alloy micro-pump with uncertain parameterscitations
- 2018Uncertainty analysis of an actuator for a shape memory alloy micro-pump with uncertain parameterscitations
- 2017Edge Effect on Nanoparticles of an Interconnect Alloy from the ABV Model
- 2013Contribution to the modeling of hydration and chemical shrinkage of slag-blended cement at early agecitations
- 2013Contribution to the modeling of hydration and chemical shrinkage of slag-blended cement at early agecitations
- 2012Finite Element analysis of a shape memory alloy actuator for a micropumpcitations
- 2012Finite Element analysis of a shape memory alloy actuator for a micropumpcitations
- 2010Coupling between measured kinematic fields and multicrystal SMA finite element calculationscitations
- 2010Coupling between measured kinematic fields and multicrystal SMA finite element calculationscitations
- 2009Coupling between experiment and numerical simulation of shape memory alloy multicrystalcitations
- 2009Coupling between experiment and numerical simulation of shape memory alloy multicrystalcitations
- 2009Dialogue entre expérience et simulation numérique pour un multicristal en alliage à mémoire de forme
- 2009Dialogue entre expérience et simulation numérique pour un multicristal en alliage à mémoire de forme
- 2008Experimental identification and micromechancial modeling of the behavior of a multicrystal out of shape memory alloy
Places of action
Organizations | Location | People |
---|
article
Elastic stability of functionally graded graphene reinforced porous nanocomposite beams using two variables shear deformation
Abstract
This paper is concerned with the buckling behavior of functionally graded graphene reinforced porous nanocomposite beams based on the finite element method (FEM) using two variables trigonometric shear deformation theory. Both Young's modulus and material density of the FGP beam element are simultaneously considered as grading through the thickness of the beam. The finite element approach is developed using a nonlocal strain gradient theory. The governing equations derived here are solved introducing a 3-nodes beam element, and then the critical buckling load is calculated with different porosity distributions and GPL dispersion patterns. After a convergence and validation study to verify the accuracy of the present model, a comprehensive parametric study is carried out, with a particular focus on the effects of weight fraction, distribution pattern of GPL reinforcements on the Buckling behavior of the nanocomposite beam. The effects of various structural parameters such as the dispersion patterns for the graphene and porosity, thickness ratio, boundary conditions, and nonlocal and strain gradient parameters are brought out. The results indicate that porosity distribution and GPL pattern have significant effects on the response of the nanocomposite beams, and the results allows to identify the most effective way to achieve improved buckling behavior of the porous nanocomposite beam.