People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Miruszewski, Tadeusz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Assessment of High-Temperature Oxidation Properties of 316L Stainless Steel Powder and Sintered Porous Supports for Potential Solid Oxide Cells Applicationscitations
- 2022Properties of oxygen vacancy and hydrogen interstitial defects in strontium titanatecitations
- 2022Properties of oxygen vacancy and hydrogen interstitial defects in strontium titanate: DFT + Ud,p calculationscitations
- 2021Properties of Barium Cerate-Zirconate Thin Filmscitations
Places of action
Organizations | Location | People |
---|
article
Assessment of High-Temperature Oxidation Properties of 316L Stainless Steel Powder and Sintered Porous Supports for Potential Solid Oxide Cells Applications
Abstract
In this work, the oxidation properties of austenitic 316L stainless steel powder and sintered porous support were investigated at the temperature range of ~600–750 °C for 100 hours in ambient air. Oxidation kinetics was deter-mined by continuous thermogravimetry and analyzed employing parabolic rate law. It was observed that oxidation leads to the formation of an oxide scale, with substantial oxidation occurring at ≥ 650 °C in the powder. The porous steel support was fabricated using the tape casting method with two distinct pore former concentrations. The micro-structural features of both the powder and support were investigated by X-ray diffractometry and scanning electron microscopy coupled with energy-dispersive X-ray analysis. The mechanical properties of the metal support were examined before and after oxidation via a microhardness test. The effect of porosity on the resulting properties of the metal support was also highlighted. In summary, 316L stainless steel support suits SOCs applications below 600 °C.