People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Myszka, Dawid
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2023Abrasive Wear Resistance of Ultrafine Ausferritic Ductile Iron Intended for the Manufacture of Gears for Mining Machinerycitations
- 2023Supported by 2D and 3D Imaging Methods Investigation of the Influence of Fiber Orientation on the Mechanical Properties of the Composites Reinforced with Fibers in a Polymer Matrixcitations
- 2023Highly Accurate Structural Analysis of Austempered Ductile Iron Using EBSD Techniquecitations
- 2023Numerical and Experimental Analysis of Strength Loss of 1.2709 Maraging Steel Produced by Selective Laser Melting (SLM) under Thermo-Mechanical Fatigue Conditionscitations
- 2022The Microstructure of Cast Steel Subjected to Austempering and B-Q&P Heat Treatmentcitations
- 2021Influence of Tungsten on the Structure and Properties of Ductile Iron Containing 0.8% Cucitations
- 2020Influence of rare earths metals (Rem) on the structure and selected properties of grey cast iron
- 2019Transformation kinetics of austempered dductile iron: Dilatometric experiments and model parameter evaluationcitations
- 2018High Strain Rate Dynamic Deformation of ADI
- 2018High Strain Rate Dynamic Deformation of ADIcitations
- 2018Comparison of Some Properties of Selected Co-Cr Alloys Used in Dental Prosthetics
- 2018Determination of susceptibility of cast iron with a predetermined chemical composition to shape properties and microstructure through bainitic transformation
- 2018Influence of pre-heat treatment on mechanical properties of austempered ductile cast iron
- 2018Evaluation of Mechanical Properties of Al7050-cenosphere Metal Matrix Composites
- 2018The effect of addition of germanium to the surface phenomena in silver alloys
- 2017The comparative study of the microstructure and phase composition of nanoausferritic ductile iron alloy using SEM, TEM, magnetometer and X-ray diffraction methodscitations
- 2014Preliminary evaluation of the applicability of F, V and aesignals in diagnosis of ADI machining processcitations
- 2014Influence of heat treatment conditions on microstructure and mechanical properties of austempered ductile iron after dynamic deformation test
- 2012Mikrostructure transformations in austempered ductile iron during deformation by dynamic hardness test
- 2012New possibilities of shaping the surface properties in austempered ductile iron castings
- 2011Advanced metrology of surface defects measurement for aluminum die casting
- 2009Detonation sprayed coatings Al 2O 3-TiO 2 and WC/Co on adi investment castings
- 2007Austenite-Martensite transformation in austempered ductile iron
Places of action
Organizations | Location | People |
---|
article
Supported by 2D and 3D Imaging Methods Investigation of the Influence of Fiber Orientation on the Mechanical Properties of the Composites Reinforced with Fibers in a Polymer Matrix
Abstract
The aim of this study was to examine the behavior of the carbon fiber reinforced polymer (CFRP) compositesdepending on the fiber orientation and to understand the influence of microstructural discontinuities on mechanicalproperties. For the tests 210 gsm prepreg composite and 200 gsm carbon fabric with polymer matrix have beenused. Samples were structured and later examined according to the ASTM-D3039 and ASTM-D3878 (equivalentsare ISO 20975, ISO 527-4 and ISO 527-5). Accordingly, to the number of layers, three ways of the fibers arrangingin relation to the applied force were used. Mechanical properties were determined in a static tensile test. The resultsof imaging studies, which included analyzes of Digital Image Correlation, Computed Tomography and ScanningElectron Microscopy, showed structural discontinuities, specific stress distribution and propagation of stressesdepending on the production technology, which were correlated with the obtained strength results. The source ofthe gradual development of the degradation of the composite structure was observed in local microdamages andmicrocracks. As a result of a sub-critical crack growth within the resin matrix material, the defects are subject to a complex, multi-axial stress field on the micro-scale, even if the globally applied force is axial. Samples in whichthe load was applied along the axis of the fibers behave like an elastic material, while samples, where the force isapplied at an angle to the axis of the fibers, tend to behave like an elastic-plastic material.