Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Loiodice, Sophia

  • Google
  • 1
  • 11
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Use of Dental Defects Associated with Low-Dose di(2-Ethylhexyl)Phthalate as an Early Marker of Exposure to Environmental Toxicants.11citations

Places of action

Chart of shared publication
Houari, S.
1 / 4 shared
Bazin, D.
1 / 1 shared
Vennat, E.
1 / 2 shared
Sadoine, Jeremy
1 / 1 shared
Trần, Thu Thuy
1 / 1 shared
Bui, Ai Thu
1 / 1 shared
Ricort, Jean-Marc
1 / 1 shared
Mhaouty-Kodja, Sakina
1 / 1 shared
Babajko, Sylvie
1 / 2 shared
Roubier, N.
1 / 1 shared
Berdal, Ariane
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Houari, S.
  • Bazin, D.
  • Vennat, E.
  • Sadoine, Jeremy
  • Trần, Thu Thuy
  • Bui, Ai Thu
  • Ricort, Jean-Marc
  • Mhaouty-Kodja, Sakina
  • Babajko, Sylvie
  • Roubier, N.
  • Berdal, Ariane
OrganizationsLocationPeople

article

Use of Dental Defects Associated with Low-Dose di(2-Ethylhexyl)Phthalate as an Early Marker of Exposure to Environmental Toxicants.

  • Houari, S.
  • Bazin, D.
  • Loiodice, Sophia
  • Vennat, E.
  • Sadoine, Jeremy
  • Trần, Thu Thuy
  • Bui, Ai Thu
  • Ricort, Jean-Marc
  • Mhaouty-Kodja, Sakina
  • Babajko, Sylvie
  • Roubier, N.
  • Berdal, Ariane
Abstract

<h4>Background</h4>Markers of exposure to environmental toxicants are urgently needed. Tooth enamel, with its unique properties, is able to record certain environmental conditions during its formation. Enamel formation and quality are dependent on hormonal regulation and environmental conditions, including exposure to endocrine disrupting chemicals (EDCs). Among EDCs, phthalates such as di-(2-ethylhexyl) phthalate (DEHP) raise concerns about their contribution to various pathologies, including those of mineralized tissues.<h4>Objectives</h4>The effects of exposure to low-doses of DEHP on the continually growing incisors were analyzed in mouse males and females.<h4>Methods</h4>Adult male and female C57BL/6J mice were exposed daily to 0.5, 5, and 50μg/kg per day DEHP for 12 wk and their incisors clinically examined. Incisors of males were further analyzed by scanning electron microscopy (SEM), micro X-ray computed tomography (micro-computed tomography; μCT), and nanoindentation for the enamel, histology and real-time quantitative polymerase chain reaction (RT-qPCR) for the dental epithelium.<h4>Results</h4>Clinical macroscopic observations of incisors showed various dose-dependent dental lesions such as opacities, scratches, and enamel breakdown in 30.5% of males (10 of 34 total incisors across three independent experiments), and 15.6% of females (7 of 46 incisors) at the highest dose, among which 18.1% (6 of 34 total incisors across three independent experiments) and 8.9% (4 of 46 incisors), respectively, had broken incisors. SEM showed an altered enamel surface and ultrastructure in DEHP-exposed male mice. Further characterization of the enamel defects in males by μCT showed a lower mineral density than controls, and nanoindentation showed a lower enamel hardness during all stages of enamel mineralization, with more pronounced alterations in the external part of the enamel. A delay in enamel mineralization was shown by several approaches (μCT, histology, and RT-qPCR).<h4>Discussion</h4>We conclude that DEHP disrupted enamel development in mice by directly acting on dental cells with higher prevalence and severity in males than in females. The time window of DEHP effects on mouse tooth development led to typical alterations of structural, biochemical, and mechanical properties of enamel comparable to other EDCs, such as bisphenol A. The future characterization of dental defects in humans and animals due to environmental toxicants might be helpful in proposing them as early markers of exposure to such molecules. https://doi.org/10.1289/EHP10208.

Topics
  • density
  • impedance spectroscopy
  • mineral
  • surface
  • scanning electron microscopy
  • experiment
  • tomography
  • hardness
  • nanoindentation
  • defect