People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Moradi, Morteza
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Innovative welding integration of acousto-ultrasonic composite transducers onto thermoplastic composite structurescitations
- 2023Intelligent Health Indicators Based on Semi-supervised Learning Utilizing Acoustic Emission Datacitations
- 2023Acousto-ultrasonic composite transducers integration into thermoplastic composite structures via ultrasonic welding
- 2023Intelligent health indicator construction for prognostics of composite structures utilizing a semi-supervised deep neural network and SHM datacitations
- 2023Developing health indicators for composite structures based on a two-stage semi-supervised machine learning model using acoustic emission datacitations
- 2023Delamination Size Prediction for Compressive Fatigue Loaded Composite Structures Via Ultrasonic Guided Wave Based Structural Health Monitoring
- 2021Effect of honeycomb core on free vibration analysis of fiber metal laminate (FML) beams compared to conventional compositescitations
- 2020Investigation of nonlinear post-buckling delamination in curved laminated composite panels via cohesive zone modelcitations
- 2019Edge disbond detection of carbon/epoxy repair patch on aluminum using thermographycitations
- 2019Numerical and experimental study for assessing stress in carbon epoxy composites using thermographycitations
- 2019Post buckling behavior analysis of unidirectional saddle shaped composite panels containing delaminations using cohesive zone modeling
Places of action
Organizations | Location | People |
---|
document
Delamination Size Prediction for Compressive Fatigue Loaded Composite Structures Via Ultrasonic Guided Wave Based Structural Health Monitoring
Abstract
Under in-plane compressive load conditions, the growth of a delamination initially induced by an impact can be followed by a fast growth after a threshold level, which leads to a catastrophic failure in composite structures. To avoid reaching this critical level, it is essential to uncover the delamination size and growth pattern in real time. Ultrasonic Guided Waves (UGW) have a strong capability to interrogate and monitor the structure in real-time and thus track the growth of damage, which may occur during the flight cycles. Although various types of damage affect the monitored UGW signals, it is challenging to determine from the UGW signals what types of damage and at what rate of growth are occurring within the structure. UGW signals can be acquired at defined intervals and then analysed to possibly detect different types of damages, such as delamination, and to quantify the rate of damage growth over fatigue cycles. However, correlating the UGW-based Damage Indicators (DIs) with the specific type of damage, such as delamination, and damage growth is a challenging task as the relation between these DIs and the actual damage state is very complex. Therefore, in this study, a supervised Deep Neural Network-based (DNN) prediction model is proposed aiming to diagnose the delamination size of the composite structure by correlating the UGW-based DIs with the quantified time-varying delamination size. UGW data is collected through a network of permanently installed piezoelectric transducers (PZTs). The delamination size is obtained through ultrasonic C-Scan technique at defined cycles. DIs are extracted in time, frequency, and time-frequency domains and used as the input for the DNN-based regression model. Each sensor-actuator path is considered as an independent set of indicators, which are separated for training, validation, and testing purposes. The effect of the different paths on the delamination size prediction is presented along with the model performance on measured delamination growth in woven type composite sample.