People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kumar, Siddhant
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2024Inverse Designing Surface Curvatures by Deep Learningcitations
- 2023Neural cellular automata for solidification microstructure modellingcitations
- 2023Neural cellular automata for solidification microstructure modellingcitations
- 2023Inverse-designed growth-based cellular metamaterialscitations
- 2022Conceptual design of foldable truck trailercitations
- 2021What if spiders made metamaterial webs using materials with mechanical size-effects?
- 2020A meshless multiscale approach to modeling severe plastic deformation of metals: Application to ECAE of pure coppercitations
Places of action
Organizations | Location | People |
---|
document
What if spiders made metamaterial webs using materials with mechanical size-effects?
Abstract
<p>Spider's webs are elegant examples of natural composites that can absorb out-of-plane impact energy to capture prey. Different spiders have different methods and structure of webs, and these variations in topologies have a significant effect on the prey catching abilities of the web. Taking inspiration from the spiders, metamaterials that have architectured topology can be fabricated according to end applications such as energy absorbers or impact tolerant materials. In this investigation, we theoretically examined impact loading on various orb-spider webs modeled with metamaterial architecture using materials that show size-dependent behavior. Using the size-dependent properties of nano-reinforced polymer-derived ceramics (PDCs), various metamaterial topologies were evaluated for out-of-plane impact due using ANSYS Ls-Dyna. The material properties capture the size dependency of the ceramics where smaller elements have higher strength due to reduced flaw intensity; the mechanical strength of these elements does not follow the conventional Griffith Theory. In this study, spider web geometries fabricated with PDCs with varying size elements were examined.</p>