Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Davidson, Barry

  • Google
  • 1
  • 5
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021BOND STRENGTH DEGRADATION OF ADHESIVE- BONDED CFRP COMPOSITE LAP JOINTS AFTER LIGHTNING STRIKE3citations

Places of action

Chart of shared publication
Prasad, Srihari Ganesh
1 / 1 shared
Lampkin, Spencer
1 / 1 shared
Wang, Yeqing
1 / 2 shared
Lin, Wenhua
1 / 1 shared
Zhupanska, Olesya
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Prasad, Srihari Ganesh
  • Lampkin, Spencer
  • Wang, Yeqing
  • Lin, Wenhua
  • Zhupanska, Olesya
OrganizationsLocationPeople

document

BOND STRENGTH DEGRADATION OF ADHESIVE- BONDED CFRP COMPOSITE LAP JOINTS AFTER LIGHTNING STRIKE

  • Prasad, Srihari Ganesh
  • Lampkin, Spencer
  • Wang, Yeqing
  • Lin, Wenhua
  • Davidson, Barry
  • Zhupanska, Olesya
Abstract

<jats:p>Adhesive bonding to join fiber reinforced polymer matrix composites holds great promise to replace conventional mechanical attachment techniques for joining composite components. Understanding the behavior of these adhesive joints when subjected to various environmental loads, such as lightning strike, represents an important concern in the safe design of adhesively bonded composite aircraft and spacecraft structures. In the current work, simulated lightning strike tests are performed at four elevated discharge impulse current levels (71.4, 100.2, 141, and 217.8 kA) to evaluate the effects of lightning strike on the mechanical behavior of single lap joints. After documentation of the visually observed lightning strike induced damage, single lap shear tests are conducted to determine the residual bond strength. Post-test visual observation and cross-sectional microscopy are conducted to document the failure modes of the adhesive region. Although the current work was performed on a limited number of specimens, it identified important trends and directions for future more comprehensive studies on lightning strike effects in adhesively bonded composites. It is found that the lightning strike induced damage (extent of the surface vaporization area and the delamination depth) increases as the lightning current increases. The stiffness of the adhesive joints and shear bond strength did not show a clear correlation with the lightning current levels, which could be due to many competing factors, including the temperature rise caused by the lightning strike and the surface conditions of the adherends prior to bonding. The failure modes of the adhesive regions for all specimens demonstrate a mixed mode of adhesive and cohesive failure, which may be due to inconsistent surface characteristics of the adherends before bonding. The energy absorbed during the lap shear tests generally increases as the lightning current increases.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • strength
  • shear test
  • composite
  • joining
  • microscopy