People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Michalski, Bartosz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2022In situ alloying of NiTi: Influence of laser powder bed fusion (LBPF) scanning strategy on chemical compositioncitations
- 2022Heat Treatment of NiTi Alloys Fabricated Using Laser Powder Bed Fusion (LPBF) from Elementally Blended Powderscitations
- 2021Effect of severe deformation on the microstructure and properties of Nd-Fe-B powders caused by hydrostatic extrusioncitations
- 2019Monitoring of the hydrogen decrepitation process by acoustic emissioncitations
- 2019Effect of silver content in Zr<inf>55</inf>Cu<inf>30</inf>Ni<inf>5</inf>Al<inf>10−x</inf>Ag<inf>X</inf> alloys on the supercooled liquid stability analysed by TTT diagrams
- 2017Complex Characteristics of Sintered Nd–Fe–B Magnets in Terms of Hydrogen Based Recyclingcitations
- 2016Hydrogen disproportionation phase diagram and magnetic properties for Nd<inf>15</inf>Fe<inf>79</inf>B<inf>6</inf> alloycitations
- 2013Effect of microstructure changes on magnetic properties of spark plasma sintered Nd-Fe-B powderscitations
- 2012Processing the Nd-Fe-B powders by high temperature millingcitations
- 2012Magnetic properties of Nd 12Fe 82B 6 and Nd 14Fe 80B 6 powders obtained by high temperature milling
- 2011Characterization of nanostructured Nd-Fe-Al permanent magnetscitations
- 2011Correlation between the size of Nd<inf>60</inf>Fe<inf>30</inf>Al <inf>10</inf> sample, cast by various techniques and its coercivity
- 2008Effect of processing parameters on the structure and magnetic properties of Nd60Fe30Al10 alloycitations
Places of action
Organizations | Location | People |
---|
article
Complex Characteristics of Sintered Nd–Fe–B Magnets in Terms of Hydrogen Based Recycling
Abstract
Sintered Nd–Fe–B magnets, dismantled by the P.P.H.U. Polblume company from scrap hard disc drives and medical device, were thermally demagnetized and analyzed in terms of their chemical composition, structure and magnetic properties.Magnets from hard disc drives drives had a magnetic structure of two opposite poles in a plane of a magnet and were covered with a nickel coating (around 50μm in thick), which however was oftendiscontinuous and deeply scratched. The majority of the magnets were partially destroyed (broken or corroded). The magnet from hard disc drives were basically made of iron (65±1 wt%) and neodymium (30±2 wt%) however, they also included alloying elements such as Co (1–2.5 wt%), Dy (0–1 wt%) or Pr (0–5 wt%). The magnets from medical device consisted only of iron (65±1 wt%) and neodymium (34±1 wt%).Magnets of both kinds were textured thus their XRD patterns were amended. Diffraction patterns, typical for the Nd2Fe14B (') phase, wereachieved after mechanical crushing of the bulk magnets. A regular X-ray diffraction pattern was achieved after mechanical crushing of the magnets.The microstructure of both types of the magnets, observed by scanning electron microscopy, consisted of grey grains of a Nd2Fe14B (') phase and a Nd-rich grain boundary phase. The magnets from hard disc drives exhibited excellent magnetic properties and anisotropy: maximum energy product above 300 kJ/m3, remanence around 1.4 T and coercivity around 1000 kA/m, slightly varying between each magnet. Magnetic properties of medical magnet were only a little worse: maximum energy product above 200 kJ/m3, remanence around 1.1 T and coercivity around 900 kA/m. Hydrogen disproportionation phase diagrams (temperature vs. pressure) were constructed for both kinds of the magnets, revealing possible conditions for the hydrogenation, disproportionation, desorption and recombination reaction.