Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Michalski, Bartosz

  • Google
  • 13
  • 23
  • 90

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (13/13 displayed)

  • 2022In situ alloying of NiTi: Influence of laser powder bed fusion (LBPF) scanning strategy on chemical composition40citations
  • 2022Heat Treatment of NiTi Alloys Fabricated Using Laser Powder Bed Fusion (LPBF) from Elementally Blended Powders23citations
  • 2021Effect of severe deformation on the microstructure and properties of Nd-Fe-B powders caused by hydrostatic extrusion1citations
  • 2019Monitoring of the hydrogen decrepitation process by acoustic emission2citations
  • 2019Effect of silver content in Zr<inf>55</inf>Cu<inf>30</inf>Ni<inf>5</inf>Al<inf>10−x</inf>Ag<inf>X</inf> alloys on the supercooled liquid stability analysed by TTT diagramscitations
  • 2017Complex Characteristics of Sintered Nd–Fe–B Magnets in Terms of Hydrogen Based Recycling1citations
  • 2016Hydrogen disproportionation phase diagram and magnetic properties for Nd<inf>15</inf>Fe<inf>79</inf>B<inf>6</inf> alloy7citations
  • 2013Effect of microstructure changes on magnetic properties of spark plasma sintered Nd-Fe-B powders3citations
  • 2012Processing the Nd-Fe-B powders by high temperature milling2citations
  • 2012Magnetic properties of Nd 12Fe 82B 6 and Nd 14Fe 80B 6 powders obtained by high temperature millingcitations
  • 2011Characterization of nanostructured Nd-Fe-Al permanent magnets5citations
  • 2011Correlation between the size of Nd<inf>60</inf>Fe<inf>30</inf>Al <inf>10</inf> sample, cast by various techniques and its coercivitycitations
  • 2008Effect of processing parameters on the structure and magnetic properties of Nd60Fe30Al10 alloy6citations

Places of action

Chart of shared publication
Chmielewska, Agnieszka
2 / 5 shared
Wysocki, Bartlomiej
2 / 4 shared
Buhagiar, Joseph
2 / 10 shared
Gloc, Michał
1 / 17 shared
Swieszkowski, Wojciech
2 / 15 shared
Adamczyk-Cieślak, Bogusława
2 / 77 shared
Kruszewski, Mirosław
1 / 16 shared
Zielińska, Aleksandra
1 / 7 shared
Kwaśniak, Piotr
1 / 5 shared
Krawczynska, Agnieszka
1 / 7 shared
Kaszuwara, Waldemar
8 / 65 shared
Zygmuntowicz, Justyna
1 / 57 shared
Kulczyk, M.
1 / 4 shared
Pawlik, P.
1 / 2 shared
Szymański, Mateusz
3 / 4 shared
Leonowicz, Marcin
5 / 26 shared
Płowiec, Jan
1 / 3 shared
Latuch, Jerzy
3 / 15 shared
Błyskun, Piotr
1 / 11 shared
Miazga, Zbigniew
2 / 2 shared
Jezierska, Elżbieta
2 / 4 shared
Lis, M.
1 / 1 shared
Pawlik, Piotr
2 / 15 shared
Chart of publication period
2022
2021
2019
2017
2016
2013
2012
2011
2008

Co-Authors (by relevance)

  • Chmielewska, Agnieszka
  • Wysocki, Bartlomiej
  • Buhagiar, Joseph
  • Gloc, Michał
  • Swieszkowski, Wojciech
  • Adamczyk-Cieślak, Bogusława
  • Kruszewski, Mirosław
  • Zielińska, Aleksandra
  • Kwaśniak, Piotr
  • Krawczynska, Agnieszka
  • Kaszuwara, Waldemar
  • Zygmuntowicz, Justyna
  • Kulczyk, M.
  • Pawlik, P.
  • Szymański, Mateusz
  • Leonowicz, Marcin
  • Płowiec, Jan
  • Latuch, Jerzy
  • Błyskun, Piotr
  • Miazga, Zbigniew
  • Jezierska, Elżbieta
  • Lis, M.
  • Pawlik, Piotr
OrganizationsLocationPeople

article

Complex Characteristics of Sintered Nd–Fe–B Magnets in Terms of Hydrogen Based Recycling

  • Szymański, Mateusz
  • Michalski, Bartosz
  • Leonowicz, Marcin
  • Miazga, Zbigniew
Abstract

Sintered Nd–Fe–B magnets, dismantled by the P.P.H.U. Polblume company from scrap hard disc drives and medical device, were thermally demagnetized and analyzed in terms of their chemical composition, structure and magnetic properties.Magnets from hard disc drives drives had a magnetic structure of two opposite poles in a plane of a magnet and were covered with a nickel coating (around 50μm in thick), which however was oftendiscontinuous and deeply scratched. The majority of the magnets were partially destroyed (broken or corroded). The magnet from hard disc drives were basically made of iron (65±1 wt%) and neodymium (30±2 wt%) however, they also included alloying elements such as Co (1–2.5 wt%), Dy (0–1 wt%) or Pr (0–5 wt%). The magnets from medical device consisted only of iron (65±1 wt%) and neodymium (34±1 wt%).Magnets of both kinds were textured thus their XRD patterns were amended. Diffraction patterns, typical for the Nd2Fe14B (') phase, wereachieved after mechanical crushing of the bulk magnets. A regular X-ray diffraction pattern was achieved after mechanical crushing of the magnets.The microstructure of both types of the magnets, observed by scanning electron microscopy, consisted of grey grains of a Nd2Fe14B (') phase and a Nd-rich grain boundary phase. The magnets from hard disc drives exhibited excellent magnetic properties and anisotropy: maximum energy product above 300 kJ/m3, remanence around 1.4 T and coercivity around 1000 kA/m, slightly varying between each magnet. Magnetic properties of medical magnet were only a little worse: maximum energy product above 200 kJ/m3, remanence around 1.1 T and coercivity around 900 kA/m. Hydrogen disproportionation phase diagrams (temperature vs. pressure) were constructed for both kinds of the magnets, revealing possible conditions for the hydrogenation, disproportionation, desorption and recombination reaction.

Topics
  • grain
  • nickel
  • phase
  • grain boundary
  • scanning electron microscopy
  • x-ray diffraction
  • Hydrogen
  • chemical composition
  • iron
  • phase diagram
  • Neodymium
  • coercivity