Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Turek, M.

  • Google
  • 6
  • 34
  • 50

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2023High versus low energy ion irradiation impact on functional properties of PLD-grown alumina coatings ; ENEngelskEnglishHigh versus low energy ion irradiation impact on functional properties of PLD-grown alumina coatings4citations
  • 2021Investigation of monocrystalline P-type PERC cells featuring the laser enhanced contact optimization process and new LECO paste17citations
  • 2017Microstructural identification of Cu in solar cells sensitive to light-induced degradation19citations
  • 2016Enhancement of carrier mobility in thin Ge layer by Sn co-doping8citations
  • 2015Depth Profile Analysis of Phosphorus Implanted SiC Structures2citations
  • 2010Numerical simulations of thermo-mechanical stresses during the casting of multi-crystalline silicon ingotscitations

Places of action

Chart of shared publication
Frelek-Kozak, M.
1 / 3 shared
Wyszkowska, E.
1 / 4 shared
Jagielski, J.
1 / 29 shared
Zaborowska, A.
1 / 3 shared
Kosińska, A.
1 / 3 shared
Azarov, Alexander
1 / 20 shared
Kurpaska, L.
1 / 12 shared
Krassowski, E.
1 / 1 shared
Großer, S.
2 / 5 shared
Zhao, H.
1 / 22 shared
Henning, A.
1 / 2 shared
Hagendorf, C.
1 / 16 shared
Luka, T.
1 / 1 shared
Grenzer, J.
1 / 12 shared
Andric, S.
1 / 1 shared
Berencen, Y.
1 / 1 shared
Prucnal, S.
1 / 1 shared
Liu, F.
1 / 13 shared
Bischoff, L.
1 / 4 shared
Skorupa, W.
1 / 4 shared
Helm, M.
1 / 8 shared
Drozdziel, A.
1 / 1 shared
Pyszniak, K.
1 / 1 shared
Vines, Lasse
1 / 24 shared
Tiagulskyi, S.
1 / 1 shared
Zhou, S.
1 / 15 shared
Żuk, J.
1 / 1 shared
Miśnik, Maciej
1 / 1 shared
Szmidt, Jan
1 / 16 shared
Król, Krystian Bogumił
1 / 6 shared
Sochacki, Mariusz
1 / 9 shared
Konarski, P.
1 / 5 shared
Bagdahn, J.
1 / 12 shared
Oswald, M.
1 / 4 shared
Chart of publication period
2023
2021
2017
2016
2015
2010

Co-Authors (by relevance)

  • Frelek-Kozak, M.
  • Wyszkowska, E.
  • Jagielski, J.
  • Zaborowska, A.
  • Kosińska, A.
  • Azarov, Alexander
  • Kurpaska, L.
  • Krassowski, E.
  • Großer, S.
  • Zhao, H.
  • Henning, A.
  • Hagendorf, C.
  • Luka, T.
  • Grenzer, J.
  • Andric, S.
  • Berencen, Y.
  • Prucnal, S.
  • Liu, F.
  • Bischoff, L.
  • Skorupa, W.
  • Helm, M.
  • Drozdziel, A.
  • Pyszniak, K.
  • Vines, Lasse
  • Tiagulskyi, S.
  • Zhou, S.
  • Żuk, J.
  • Miśnik, Maciej
  • Szmidt, Jan
  • Król, Krystian Bogumił
  • Sochacki, Mariusz
  • Konarski, P.
  • Bagdahn, J.
  • Oswald, M.
OrganizationsLocationPeople

article

Depth Profile Analysis of Phosphorus Implanted SiC Structures

  • Turek, M.
  • Żuk, J.
  • Miśnik, Maciej
  • Szmidt, Jan
  • Król, Krystian Bogumił
  • Sochacki, Mariusz
  • Konarski, P.
Abstract

Secondary ion mass spectrometry depth profile analyses were performed on two sets of 4H-SiC(0001) substrate samples implanted with phosphorus. Both sets were processed under the same conditions. We implanted the samples with 100 keV (1011-1014 cm-2) phosphorus ions through the thin chemical vapor deposition deposited silicon dioxide stopping mask in order to obtain an ultra-shallow implantation profile. After phosphorus implantation, secondary ion mass spectrometry depth profile analysis was performed on the first set of samples and the second set was subjected to thermal oxidation procedure at 1200°C in order to create a dielectric layer. The aim of the oxidation process was formation of the silicon dioxide layer enriched with phosphorus: the element, which is considered to be suitable for trap density reduction. Ion implantation parameters as well as oxidation and chemical etching procedures were examined for the proper incorporation of phosphorus into the subsurface structure of the silicon oxide. Secondary ion mass spectrometry depth profile analysis was performed with Physical Electronics 06-350E sputter ion gun and QMA-410 Balzers quadrupole mass analyser. The analytical parameters such as: 1.7 keV Ar+ ion beam digitally scanned over 3×3 mm2 area and ion erosion rate of 1.4 nm/min and sampling rate of 0.3 nm, were suitable for samples oxidized after ion implantation.

Topics
  • density
  • impedance spectroscopy
  • Silicon
  • etching
  • spectrometry
  • chemical vapor deposition
  • Phosphorus
  • secondary ion mass spectrometry