Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Stráská, J.

  • Google
  • 6
  • 31
  • 134

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2021Novel magnesium alloy containing Y, Gd and Ca with enhanced ignition temperature and mechanical properties for aviation applications37citations
  • 2021The effect of powder size on the mechanical and corrosion properties and the ignition temperature of WE43 alloy prepared by spark plasma sintering27citations
  • 2020Texture Hardening Observed in Mg–Zn–Nd Alloy Processed by Equal-Channel Angular Pressing (ECAP)16citations
  • 2017Microhardness and microstructure evolution of ultra-fine grained Ti-15Mo and TIMETAL LCB alloys prepared by high pressure torsion31citations
  • 2015An ultrasonic internal friction study of ultrafine-grained AZ31magnesium alloy12citations
  • 2015Microstructure and properties of spark plasma sintered Al-Zn-Mg-Cu alloy11citations

Places of action

Chart of shared publication
Kubásek, Jiří
2 / 44 shared
Minárik, P.
3 / 16 shared
Čavojský, M.
1 / 3 shared
Veselý, J.
2 / 12 shared
Dvorský, Drahomír
2 / 18 shared
Vojtěch, Dalibor
2 / 36 shared
Knapek, M.
1 / 6 shared
Hosová, Klára
1 / 11 shared
Šašek, S.
2 / 3 shared
Průša, Filip
1 / 8 shared
Roudnická, Michaela
1 / 6 shared
Nečas, David
1 / 16 shared
Kubásek, J.
1 / 3 shared
Král, R.
1 / 16 shared
Bohlen, J.
1 / 139 shared
Polyakova, V.
1 / 2 shared
Semenova, I.
1 / 3 shared
Stráský, J.
1 / 9 shared
Janeček, M.
2 / 11 shared
Václavová, K.
1 / 1 shared
Nejezchlebová, J.
1 / 2 shared
Seiner, H.
2 / 47 shared
Koller, M.
1 / 7 shared
Ševčík, M.
1 / 20 shared
Sedlák, P.
1 / 45 shared
Landa, M.
1 / 40 shared
Vilémová, M.
1 / 33 shared
Dopita, M.
1 / 33 shared
Becker, H.
1 / 8 shared
Rafaja, David
1 / 293 shared
Málek, P.
1 / 8 shared
Chart of publication period
2021
2020
2017
2015

Co-Authors (by relevance)

  • Kubásek, Jiří
  • Minárik, P.
  • Čavojský, M.
  • Veselý, J.
  • Dvorský, Drahomír
  • Vojtěch, Dalibor
  • Knapek, M.
  • Hosová, Klára
  • Šašek, S.
  • Průša, Filip
  • Roudnická, Michaela
  • Nečas, David
  • Kubásek, J.
  • Král, R.
  • Bohlen, J.
  • Polyakova, V.
  • Semenova, I.
  • Stráský, J.
  • Janeček, M.
  • Václavová, K.
  • Nejezchlebová, J.
  • Seiner, H.
  • Koller, M.
  • Ševčík, M.
  • Sedlák, P.
  • Landa, M.
  • Vilémová, M.
  • Dopita, M.
  • Becker, H.
  • Rafaja, David
  • Málek, P.
OrganizationsLocationPeople

article

Microstructure and properties of spark plasma sintered Al-Zn-Mg-Cu alloy

  • Vilémová, M.
  • Dopita, M.
  • Becker, H.
  • Stráská, J.
  • Rafaja, David
  • Málek, P.
Abstract

The microstructure of an aluminum alloy containing 53 wt% Zn, 2.1 wt% Mg and 1.3 wt% Cu as main alloying elements has been studied with the focus on the precipitation behavior during the spark plasma sintering process. The starting material was an atomized Al-Zn-Mg-Cu powder with the particle size below 50 mu m. The particles showed a solidification microstructure from cellular to columnar or equiaxed dendritic morphology with a large fraction of the alloying elements segregated in form of intermetallic phases, mainly (Zn, Al, Cu) 4 9 Mg 3 2 and Mg 2 (Zn, Al, Cu) 1 1, at the cell and dendrite boundaries. The microstructure of the sintered specimens followed the microstructure of the initial powder. However, Mg(Zn, Al, Cu) 2 precipitates evolve at the expense of the initial precipitate phases. The precipitates which were initially continuously distributed along the intercellular and interdendritic boundaries form discrete chain-like structures in the sintered samples. Additionally, fine precipitates created during the sintering process evolve at the new low-angle boundaries. The large fraction of precipitates at the grain boundaries and especially at the former particle boundaries could not be solved into the matrix applying a usual solid solution heat treatment. A bending test reveals low ductility and strength. The mechanical properties suffer from the precipitates at former particle boundaries leading to fracture after an outer fiber tensile strain of 3.8%.

Topics
  • microstructure
  • morphology
  • grain
  • phase
  • aluminium
  • strength
  • bending flexural test
  • precipitate
  • precipitation
  • intermetallic
  • ductility
  • sintering