Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tobias, Jonathan H.

  • Google
  • 1
  • 7
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Deriving alpha angle from anterior-posterior dual-energy x-ray absorptiometry scans: an automated and validated approach7citations

Places of action

Chart of shared publication
Ebsim, Raja
1 / 1 shared
Faber, Benjamin G.
1 / 1 shared
Lindner, Claudia
1 / 1 shared
Cootes, Timothy
1 / 2 shared
Saunders, Fiona R.
1 / 1 shared
Frysz, Monika
1 / 1 shared
Smith, George Davey
1 / 4 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Ebsim, Raja
  • Faber, Benjamin G.
  • Lindner, Claudia
  • Cootes, Timothy
  • Saunders, Fiona R.
  • Frysz, Monika
  • Smith, George Davey
OrganizationsLocationPeople

article

Deriving alpha angle from anterior-posterior dual-energy x-ray absorptiometry scans: an automated and validated approach

  • Tobias, Jonathan H.
  • Ebsim, Raja
  • Faber, Benjamin G.
  • Lindner, Claudia
  • Cootes, Timothy
  • Saunders, Fiona R.
  • Frysz, Monika
  • Smith, George Davey
Abstract

Introduction: Alpha angle (AA) is a widely used measure of hip shape that is commonly used to define cam morphology, a bulging of the lateral aspect of the femoral head. Cam morphology has shown strong associations with hip osteoarthritis (OA) making the AA a clinically relevant measure. In both clinical practice and research studies, AA tends to be measured manually which can be inconsistent and time-consuming.Objective: We aimed to (i) develop an automated method of deriving AA from anterior-posterior dual-energy x-ray absorptiometry (DXA) scans; and (ii) validate this method against manual measures of AA.Methods: 6,807 individuals with left hip DXAs were selected from UK Biobank. Outline points were manually placed around the femoral head on 1,930 images before training a Random Forest-based algorithm to place the points on a further 4,877 images. An automatic method for calculating AA was written in Python 3 utilising these outline points. An iterative approach was taken to developing and validating the method, testing the automated measures against independent batches of manually measured images in sequential experiments.Results: Over the course of six experimental stages the concordance correlation coefficient, when comparing the automatic AA to manual measures of AA, improved from 0.28 [95% confidence interval 0.13-0.43] for the initial version to 0.88 [0.84-0.92] for the final version. The inter-rater kappa statistic comparing automatic versus manual measures of cam morphology, defined as AA ³≥60°, improved from 0.43 [80% agreement] for the initial version to 0.86 [94% agreement] for the final version.Conclusions: We have developed and validated an automated measure of AA from DXA scans, showing high agreement with manually measuring AA. The proposed method is available to the wider research community from Zenodo .

Topics
  • impedance spectroscopy
  • experiment
  • random
  • hot isostatic pressing