Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Harvey, T. J.

  • Google
  • 16
  • 26
  • 811

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (16/16 displayed)

  • 2019Cavitation erosion performance of CrAlYN/CrN nanoscale multilayer coatings deposited on Ti6Al4V by HIPIMS29citations
  • 2013Results of a UK industrial tribological surveycitations
  • 2013Influence of microstructure on the erosion and erosion–corrosion characteristics of 316 stainless steel66citations
  • 2012Investigation of erosion-corrosion mechanisms of UNS S31603 using FIB and TEM58citations
  • 2011A study on the evolution of surface and subsurface wear of UNS S31603 during erosion-corrosion20citations
  • 2011Electrochemical investigation of erosion-corrosion using a slurry pot erosion tester86citations
  • 2010Scuffing detection of TU3 cam–follower contacts by electrostatic charge condition monitoring32citations
  • 2009Surface potential effects on friction and abrasion of sliding contacts lubricated by aqueous solutions18citations
  • 2009Surface potential effects on friction and abrasion of sliding contacts lubricated by aqueous solutions18citations
  • 2009Advanced condition monitoring of tapered roller bearings, part145citations
  • 2009Erosion-corrosion resistance of engineering materials in various test conditions168citations
  • 2009Evaluation of a semi-empirical model in predicting erosion–corrosion62citations
  • 2007Real-time monitoring of wear debris using electrostatic sensing techniques35citations
  • 2003Wear performance of oil lubricated silicon nitride sliding against various bearing steels71citations
  • 2003Electrostatic charge monitoring of unlubricated sliding wear of a bearing steel54citations
  • 2002Use of electrostatic charge monitoring for early detection of adhesive wear in oil lubricated contacts49citations

Places of action

Chart of shared publication
Hovsepian, P. Eh
1 / 6 shared
Wood, R. J. K.
2 / 11 shared
Ehiasarian, A. P.
1 / 16 shared
Sugumaran, A. A.
1 / 1 shared
Wellman, R. G.
1 / 3 shared
Purandare, Y. P.
1 / 5 shared
Ma, D.
1 / 22 shared
Walker, J. C.
4 / 18 shared
King, Simon
1 / 4 shared
Wood, Robert J. K.
14 / 93 shared
Wang, S. C.
3 / 10 shared
Rajahram, S. S.
6 / 6 shared
Lalev, G.
1 / 5 shared
Powrie, H. E. G.
6 / 6 shared
Booth, J. E.
1 / 1 shared
Xu, Zhiqiang
1 / 2 shared
Humprheys, A.
2 / 2 shared
Wharton, Julian A.
1 / 27 shared
Ismail, M. N. F.
1 / 1 shared
Wharton, J. A.
1 / 7 shared
Masuda, K.
1 / 3 shared
Kawabata, M.
1 / 1 shared
Craig, M.
1 / 3 shared
Wang, Ling
2 / 32 shared
Morris, S.
4 / 7 shared
Care, I.
1 / 1 shared
Chart of publication period
2019
2013
2012
2011
2010
2009
2007
2003
2002

Co-Authors (by relevance)

  • Hovsepian, P. Eh
  • Wood, R. J. K.
  • Ehiasarian, A. P.
  • Sugumaran, A. A.
  • Wellman, R. G.
  • Purandare, Y. P.
  • Ma, D.
  • Walker, J. C.
  • King, Simon
  • Wood, Robert J. K.
  • Wang, S. C.
  • Rajahram, S. S.
  • Lalev, G.
  • Powrie, H. E. G.
  • Booth, J. E.
  • Xu, Zhiqiang
  • Humprheys, A.
  • Wharton, Julian A.
  • Ismail, M. N. F.
  • Wharton, J. A.
  • Masuda, K.
  • Kawabata, M.
  • Craig, M.
  • Wang, Ling
  • Morris, S.
  • Care, I.
OrganizationsLocationPeople

article

Real-time monitoring of wear debris using electrostatic sensing techniques

  • Wang, Ling
  • Wood, Robert J. K.
  • Harvey, T. J.
  • Powrie, H. E. G.
  • Morris, S.
Abstract

In this article, electrostatic charge sensing technology has been used to monitor adhesive wear in oil-lubricated contacts. Previous work in this area using FZG gear wear rig and pin-on-disc tribometers demonstrated that ‘precursor’ charge events may be detected prior to the onset of scuffing. Possible charging mechanisms associated with the precursor events were identified as tribocharging, surface charge variation, exo-emissions, and debris generation. This article details tests carried out to investigate the contribution of wear debris. Tests were carried out on a modified pin-on-disc rig using a sliding point contact and fitted with electrostatic sensors, one of which monitored the disc wear track and the other the disc surface just outside the wear track. Baseline tests used mild wear conditions with no seeded particles added to the entrained lubricant, whereas the high wear tests entrained seeded steel particles into the contact to promote wear. The wear debris produced dynamic charge features and the overall charging activities are directly related to the wear rate (i.e. charging levels increase with increasing wear rate). There appears to be a link between the net volume loss and the charge levels, relating charge directly to the increasing rate of debris production. Wear debris due to natural wear produced positive dynamic charge features, whereas debris from the seeded tests produced negative dynamic charge features. The polarity of the charge on debris is thought to depend on which charging and wear mechanism is predominant

Topics
  • impedance spectroscopy
  • surface
  • wear test
  • steel