People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Price, Mark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2015Predicting the crushing behaviour of composite material using high-fidelity finite element modellingcitations
- 2014Process efficiency in polymer extrusion: Correlation between the energy demand and melt thermal stabilitycitations
- 2014Energy monitoring and quality control of a single screw extrudercitations
- 2014Investigation of the process energy demand in polymer extrusion: a brief review and an experimental studycitations
- 2014Influence of Boundary Conditions on the Low Velocity Impact Damage Carbon Fibre Reinforced Plastic Plates (ICTWS2014-0501)
- 2014Low-cost Process monitoring for polymer extrusion
- 2013Integrating allowable design strains in composites with whole life valuecitations
- 2013Experimental investigation of thermoforming carbon fibre-reinforced polyphenylene sulphide compositescitations
- 2012Thermoforming carbon fibre-reinforced thermoplastic compositescitations
- 2012Digital Methods for Process Development in Manufacturing and Their Relevance to Value Driven Designcitations
- 2011The theoretical prediction of thermoformed carbon fibre reinforced thermoplastic materials in support of optimal process designcitations
- 2011Part form prediction methods for carbon fibre reinforced thermoplastic composite materials
- 2010Development of a digital methodology for composite process & manufacture in aerospace assembliescitations
- 2006Modified stiffened panel analysis methods for laser beam and friction stir welded aircraft panelscitations
- 2006The Characterization of Friction Stir Welding Process Effects on Stiffened Panel Buckling Performance
Places of action
Organizations | Location | People |
---|
article
Modified stiffened panel analysis methods for laser beam and friction stir welded aircraft panels
Abstract
The introduction of advanced welding methods as an alternative joining process to riveting in the manufacture of primary aircraft structure has the potential to realize reductions in both manufacturing costs and structural weight. Current design and analysis methods for aircraft panels have been developed and validated for riveted fabrication. For welded panels, considering the buckling collapse design philosophy of aircraft stiffened panels, strength prediction methods considering welding process effects for both local-buckling and post-buckling behaviours must be developed and validated. This article reports on the work undertaken to develop analysis methods for the crippling failure of stiffened panels fabricated using laser beam and friction stir welding. The work assesses modifications to conventional analysis methods and finite-element analysis methods for strength prediction. The analysis work is validated experimentally with welded single stiffener crippling specimens. The experimental programme has demonstrated the potential static strength of laser beam and friction stir welded sheet-stiffener joints for post-buckling panel applications. The work undertaken has demonstrated that the crippling behaviour of welded stiffened panels may be analysed considering standard-buckling behaviour. However, stiffened panel buckling analysis procedures must be altered to account for the weld joint geometry and process altered material properties. © IMechE 2006. <br/> <br/>