People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sheikh, Mohammad A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2012A comparative study of multilayer and functionally graded coated tools in high-speed machiningcitations
- 2011An investigation of multilayer coated (TiCN/Al 2O 3-TiN) tungsten carbide tools in high speed cutting using a hybrid finite element and experimental techniquecitations
- 2009A comparative study of the tool-chip contact length in turning of two engineering alloys for a wide range of cutting speedscitations
- 2009Predictive modelling of average heat partition in high speed machining of AISI/SAE 4140 steelcitations
- 2009On the heat partition properties of (Ti, Al)N compared with TiN coating in high-speed machiningcitations
- 2008An investigative study of the interface heat transfer coefficient for finite element modelling of high-speed machiningcitations
- 2008An evaluation of heat partition in the high-speed turning of AISI/SAE 4140 steel with uncoated and TiN-coated toolscitations
- 2006An investigation of tool chip contact phenomena in high-speed turning using coated toolscitations
- 2004An investigation of the tool-chip contact length and wear in high-speed turning of EN19 steelcitations
Places of action
Organizations | Location | People |
---|
article
On the heat partition properties of (Ti, Al)N compared with TiN coating in high-speed machining
Abstract
Heat flow into the cutting tool is one of the critical factors in metal cutting which can influence tool wear mechanisms, tool performance, and quality of the machined part, especially in high-speed machining. An investigation was undertaken to determine the fraction of heat that flows into the cutting tool for high-speed machining with coated tools. The cutting tests were performed over a wide range of cutting speeds during which the cutting temperatures were measured experimentally using an infrared thermal imaging camera. The sticking and sliding regions were established from an examination of the tool-chip contact region using scanning electron microscopy and energy-dispersive X-ray analysis. In the finite element model, a non-uniform heat flux was applied to match the experimental data. The heat partition results show that the use of coatings (Ti, Al)N may be more advantageous in high-speed machining than TiN coatings are. © 2009 IMechE.