People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Senthilkumar, V.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Thermal Adsorption and Corrosion Characteristic Study of Copper Hybrid Nanocomposite Synthesized by Powder Metallurgy Routecitations
- 2021EFFECTS OF PARTICLE SIZE AND SINTERING TEMPERATURE ON SUPERELASTICITY BEHAVIOR OF NiTi SHAPE MEMORY ALLOY USING NANOINDENTATIONcitations
- 2021Generative Design and Topology Optimization of Analysis and Repair Work of Industrial Robot Arm Manufactured Using Additive Manufacturing Technologycitations
- 2014Modelling and Analysis of Electrical Discharge Alloying through Taguchi Techniquecitations
- 2014Development of carbide intermetallic layer by electric discharge alloying on AISI-D2 tool steel and its wear resistancecitations
- 2012Mathematical Modeling of Machining Parameters in Electrical Discharge Machining with Cu-B<sub>4</sub>C Composite Electrodecitations
- 2012Prediction of flow stress during hot deformation of MA'ed hybrid aluminium nanocomposite employing artificial neural network and Arrhenius constitutive modelcitations
- 2011Constitutive Modeling for the Prediction of Peak Stress in Hot Deformation Processing of Al Alloy Based Nanocompositecitations
- 2008Influence of titanium carbide particles addition on the forging behaviour of powder metallurgy composite steelscitations
- 2007Some Aspects on Hot Forging Features of P/M Sintered High-Strength Titanium Carbide Composite Steel Preforms Under Different Stress State Conditionscitations
Places of action
Organizations | Location | People |
---|
article
Influence of titanium carbide particles addition on the forging behaviour of powder metallurgy composite steels
Abstract
<jats:p> This paper evaluates some of the cold-forging features of composite steel preforms of varying titanium carbide contents during cold upsetting under triaxial stress state conditions. A complete experimental investigation is carried out on composite steel preforms of varying titanium carbide contents, namely, 3%TiC and 4%TiC with different lubricating conditions; namely, graphite and zinc stearate and no lubrication. Cylindrical compacts with aspect ratios of 0.42, 0.67, and 1.0 were prepared, sintered, and upset forged at room temperature. The measured barrel radius of curvature is found to have a circular arc because the above relationship is a straight-line one. A relationship is established between the measured barrel radius and the stress ratio parameters of (σ<jats:sub>θ</jats:sub>/σ<jats:sub>z</jats:sub>), (σ<jats:sub>z</jats:sub>/σ<jats:sub>m</jats:sub>), and (σ<jats:sub>eff</jats:sub>/σ<jats:sub>z</jats:sub>) determined under triaxial stress state conditions for both composite steels of varying titanium carbide content. The effect of titanium carbide particle addition in the composite steel, initial preform geometry, and lubricating conditions on the deformation behaviour has been studied, together with the densification route of the composite steel preforms during the deformation. </jats:p>