Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cho, J. R.

  • Google
  • 1
  • 9
  • 24

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2003Dynamic distortion measurements during laser forming of Ti-6Al-4V and their comparison with a finite element model24citations

Places of action

Chart of shared publication
Moore, A. J.
1 / 4 shared
Edwardson, S. P.
1 / 5 shared
Jones, J. D. C.
1 / 10 shared
Watkins, K. G.
1 / 5 shared
Dearden, G.
1 / 5 shared
Reeves, M.
1 / 1 shared
Reed, R. C.
1 / 15 shared
Hand, Duncan P.
1 / 60 shared
French, P.
1 / 3 shared
Chart of publication period
2003

Co-Authors (by relevance)

  • Moore, A. J.
  • Edwardson, S. P.
  • Jones, J. D. C.
  • Watkins, K. G.
  • Dearden, G.
  • Reeves, M.
  • Reed, R. C.
  • Hand, Duncan P.
  • French, P.
OrganizationsLocationPeople

article

Dynamic distortion measurements during laser forming of Ti-6Al-4V and their comparison with a finite element model

  • Moore, A. J.
  • Cho, J. R.
  • Edwardson, S. P.
  • Jones, J. D. C.
  • Watkins, K. G.
  • Dearden, G.
  • Reeves, M.
  • Reed, R. C.
  • Hand, Duncan P.
  • French, P.
Abstract

<p>Laser forming is, potentially, an attractive flexible manufacturing technique for the controlled forming of aerospace alloys. Laser forming experiments using a continuous-wave CO<sub>2</sub> laser were performed on coupons of material 80 mm × 80 mm in area and 2mm thick, with sequential passes of the laser beam, at a surface scanning rate of 20 mm/s with 90 s of convective cooling between passes. A novel surface profilometer that was specifically developed to operate under the conditions of high vibration and stray light typically found in laser machining applications recorded transient surface shape changes during individual laser passes at frame rates of 4 and 0. 2 Hz. A finite element model was developed using ABAQUS for the laser forming of linear bends in free Ti-6Al-4V sheets, with sequentially coupled thermal and elastic-plastic analysis incorporating temperature-dependent material properties. Transient heat source scanning was implemented to simulate the experiment. Good agreement was found between the experimental three-dimensional shape data and those predicted by the transient model. In particular, the formation of an unwanted 'camber' distortion perpendicular to the desired main bend was correctly predicted; its magnitude and temporal evolution throughout the three laser passes, and during the periods of convective cooling, agreed well with the experimental data. The model and the shape measurement technique will enable the future predictive controlled laser forming of more complex three-dimensional shapes.</p>

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • experiment
  • forming