Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mazziotti, Maria Vittoria

  • Google
  • 2
  • 3
  • 20

National Laboratory of Frascati

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Scale-Free Distribution of Oxygen Interstitial Wires in Optimum-Doped HgBa$_2$CuO$_{4+y}$5citations
  • 2021Room temperature superconductivity dome at a Fano resonance in superlattices of wires15citations

Places of action

Chart of shared publication
Campi, Gaetano
1 / 7 shared
Bianconi, Antonio
1 / 9 shared
Jarlborg, Thomas
1 / 1 shared
Chart of publication period
2022
2021

Co-Authors (by relevance)

  • Campi, Gaetano
  • Bianconi, Antonio
  • Jarlborg, Thomas
OrganizationsLocationPeople

article

Room temperature superconductivity dome at a Fano resonance in superlattices of wires

  • Mazziotti, Maria Vittoria
Abstract

<jats:title>Abstract</jats:title><jats:p>Recently room temperature superconductivity with <jats:inline-formula id="epl20559ieqn1"><jats:tex-math><?CDATA $T_C=15$ ?></jats:tex-math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="epl20559ieqn1.gif" xlink:type="simple" /></jats:inline-formula> degrees Celsius has been discovered in a pressurized complex ternary hydride, CSH<jats:sub><jats:italic>x</jats:italic></jats:sub>, which is a carbon- and hydrogen-doped H<jats:sub>3</jats:sub>S alloy. The nanoscale structure of H<jats:sub>3</jats:sub>S is a particular realization of the 1993 patent claim of superlattice of quantum wires for room temperature superconductors and the maximum <jats:italic>T</jats:italic><jats:sub><jats:italic>C</jats:italic></jats:sub> occurs at the top of a superconducting dome. Here we focus on the electronic structure of materials showing nanoscale heterostructures at the atomic limit made of a superlattice of quantum wires like hole-doped cuprate perovskites, and organics focusing on <jats:italic>A</jats:italic>15 intermetallics and pressurized hydrides. We provide a perspective of the theory of room temperature multigap superconductivity in heterogeneous materials tuned at a shape resonance or Fano resonance in the superconducting gaps near a Lifshitz transition focusing on H<jats:sub>3</jats:sub>S where the maximum <jats:italic>T</jats:italic><jats:sub><jats:italic>C</jats:italic></jats:sub> occurs where the multiband metal is tuned by pressure near a Lifshitz transition. Here the superconductivity <jats:italic>dome</jats:italic> of <jats:italic>T</jats:italic><jats:sub><jats:italic>C</jats:italic></jats:sub> <jats:italic>vs.</jats:italic> pressure is driven by both electron-phonon coupling and contact exchange interaction. We show that the <jats:italic>T</jats:italic><jats:sub><jats:italic>C</jats:italic></jats:sub> amplification up to room temperature is driven by the Fano resonance between a superconducting gap in the anti-adiabatic regime and other gaps in the adiabatic regime. In these cases the <jats:italic>T</jats:italic><jats:sub><jats:italic>C</jats:italic></jats:sub> amplification via contact exchange interaction is the missing term in conventional multiband BCS and anisotropic Migdal-Eliashberg theories including only Cooper pairing.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • Carbon
  • theory
  • anisotropic
  • Hydrogen
  • intermetallic
  • wire
  • superconductivity
  • superconductivity
  • quantum wire