Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Aleksandrov, Alexey E.

  • Google
  • 1
  • 9
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Extended UV detection bandwidth: h-BN/Al powder nanocomposites photodetectors sensitive in a middle UV region due to localized surface plasmon resonance effect5citations

Places of action

Chart of shared publication
Corthey, Shakty
1 / 1 shared
Khabibrakhmanov, Almaz
1 / 1 shared
Yermekova, Zhanna S.
1 / 1 shared
Volkov, Ilia
1 / 1 shared
Kovalskii, Andrey M.
1 / 3 shared
Matveev, Andrei T.
1 / 2 shared
Shtansky, Dmitry V.
1 / 9 shared
Sorokin, Pavel B.
1 / 1 shared
Tameev, Alexey R.
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Corthey, Shakty
  • Khabibrakhmanov, Almaz
  • Yermekova, Zhanna S.
  • Volkov, Ilia
  • Kovalskii, Andrey M.
  • Matveev, Andrei T.
  • Shtansky, Dmitry V.
  • Sorokin, Pavel B.
  • Tameev, Alexey R.
OrganizationsLocationPeople

article

Extended UV detection bandwidth: h-BN/Al powder nanocomposites photodetectors sensitive in a middle UV region due to localized surface plasmon resonance effect

  • Corthey, Shakty
  • Khabibrakhmanov, Almaz
  • Yermekova, Zhanna S.
  • Volkov, Ilia
  • Kovalskii, Andrey M.
  • Matveev, Andrei T.
  • Shtansky, Dmitry V.
  • Sorokin, Pavel B.
  • Aleksandrov, Alexey E.
  • Tameev, Alexey R.
Abstract

<jats:title>Abstract</jats:title><jats:p>The development of high-effective photodetectors operating in a wide spectral range is an important technological task. In this work we have demonstrated that the detection bandwidth of<jats:italic>h</jats:italic>-BN photodetectors in the UV range can be extended due to the surface plasmon resonance (SPR) effect. Theoretical calculations showed that, among Al, Au, Ag, and Cu, Al is the most suitable metal for the<jats:italic>h</jats:italic>-BN UV sensible detectors due to the SPR effect in the middle UV range. Based on the theoretical predictions, a simple and highly efficient method for obtaining<jats:italic>h</jats:italic>-BN/Al nanocomposites for localized SPR-based UV detectors was developed. It was demonstrated that the<jats:italic>h</jats:italic>-BN/Al material is sensitive to UV radiation with a wavelength of 266 nm that is far away of the detection limit of 240 nm inherent for pure<jats:italic>h</jats:italic>-BN.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • surface
  • surface plasmon resonance spectroscopy