People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Weymann, Ireneusz
Adam Mickiewicz University in Poznań
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2022Dynamical quantum phase transitions in a mesoscopic superconducting systemcitations
- 2021Magnetization dynamics in a Majorana-wire–quantum-dot setupcitations
- 2019Tunnel magnetoresistance of a supramolecular spin valvecitations
- 2014Proximity effect on spin-dependent conductance and thermopower of correlated quantum dotscitations
- 2013Spin thermoelectric effects in Kondo quantum dots coupled to ferromagnetic leadscitations
- 2003Spin related effects in magnetic mesoscopic systemscitations
- 2003Spin Polarized Transport through Quantum Dots: Coulomb Blockade and Kondo Effect
Places of action
Organizations | Location | People |
---|
article
Tunnel magnetoresistance of a supramolecular spin valve
Abstract
<p>We theoretically study the transport properties of a supramolecular spin valve, consisting of a carbon nanotube with two attached magnetic molecules, weakly coupled to metallic contacts. The emphasis is put on analyzing the change of the system's transport properties with the application of an external magnetic field, which aligns the spins of the molecules. It is shown that magnetoresistive properties of the considered molecular junction, which are associated with changing the state of the molecules from the superparamagnetic to the ferromagnetic one, strongly depend on the applied bias voltage and the position of the nanotube's orbital levels, which can be tuned by a gate voltage. A strong dependence on the transport regime is also found in the case of the spin polarization of the current flowing through the system. The mechanisms leading to those effects are explained by invoking appropriate molecular states responsible for transport. The analysis is done with the aid of the real-time diagrammatic technique up to the second order of expansion with respect to tunneling processes.</p>