Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yerkhova, Anna

  • Google
  • 1
  • 4
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Effect of Elevated pH on the Commercial Enteric-Coated Omeprazole Pellets Resistance: Patent Review and Multisource Generics Comparison6citations

Places of action

Chart of shared publication
Sirko, Vitaliy
1 / 1 shared
Patel, Kavil
1 / 3 shared
Mohylyuk, Valentyn
1 / 6 shared
Katynska, Marina
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Sirko, Vitaliy
  • Patel, Kavil
  • Mohylyuk, Valentyn
  • Katynska, Marina
OrganizationsLocationPeople

article

Effect of Elevated pH on the Commercial Enteric-Coated Omeprazole Pellets Resistance: Patent Review and Multisource Generics Comparison

  • Sirko, Vitaliy
  • Patel, Kavil
  • Yerkhova, Anna
  • Mohylyuk, Valentyn
  • Katynska, Marina
Abstract

Omeprazole is a widely used over-the-counter (20 mg) proton pump inhibitor, usually supplied as oral enteric-coated pellets intended to release at pH 5.5 and higher; however, it is sensitive to acidic pH. The likelihood of elevated gastric pH in practice is very high for patients; thus, the aim of this study was to investigate the effect of elevated pH on the performance of commercial omeprazole pellets. Commercial enteric-coated delayed-release pellets were tested with water uptake-weight loss (WU-WL) test at pH range between 1.2 and 4.5 in addition to “gastric” (pH 1.2 or 4.5) and “intestinal” (pH 7.4) phase dissolution tests. The range of physical characteristics of pellets was determined with a single pellet size and sedimentation time measurement, followed by the application of modified Stokes’ Law equation. The coefficient of variation of pellet size and density, and volume-density determination coefficient (R2) as descriptors of coating thickness and microstructure variability, degree of ionisation of enteric polymers, aqueous solubility and molecular weight of plasticisers have been found useful to explain commercial delayed-release pellets behaviour during WU-WL and dissolution test. Investigated commercial delayed-release pellets demonstrated pH-dependent WU-WL results. “Gastric phase” dissolution testing of pellets at pH 4.5 showed the highest omeprazole degradation (48.1%) for Nosch Labs, intermediate values of dose loss (23.4% and 17.1%) for Teva and UQUIFA delayed-release pellets, respectively. Lab Liconsa pellets have been found as the least susceptible (3.2% of dose loss). Additionally, “gastric phase” dissolution test at pH 4.5 significantly influenced omeprazole release during the “intestinal phase”. The risk of inadequate therapy associated with intake of investigated enteric-coated delayed-release pellets at elevated gastric pH has been found as minimal for Lab Liconsa and has increased from UQUIFA and Teva to Nosh Labs pellets.

Topics
  • density
  • impedance spectroscopy
  • microstructure
  • polymer
  • phase
  • molecular weight
  • ionisation