Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Laksmana, Fesia L.

  • Google
  • 1
  • 3
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2008Using the internal stress concept to assess the importance of moisture sorption-induced swelling on the moisture transport through the glassy HPMC films4citations

Places of action

Chart of shared publication
Frijlink, Henderik W.
1 / 32 shared
Vromans, Herman
1 / 5 shared
Kok, Paul J. A. Hartman
1 / 1 shared
Chart of publication period
2008

Co-Authors (by relevance)

  • Frijlink, Henderik W.
  • Vromans, Herman
  • Kok, Paul J. A. Hartman
OrganizationsLocationPeople

article

Using the internal stress concept to assess the importance of moisture sorption-induced swelling on the moisture transport through the glassy HPMC films

  • Frijlink, Henderik W.
  • Vromans, Herman
  • Kok, Paul J. A. Hartman
  • Laksmana, Fesia L.
Abstract

The purpose of this research was to elucidate the significance of the changes in the mechanical and the volumetric properties on the moisture diffusivity through the polymer films. The internal stress concept was adapted and applied to estimate the relative impact of these property changes on the total stress experienced by a polymer film during storage. Hydroxypropyl Methylcellulose free films were used as a model material prepared at various conditions and stored at different relative humidities. The changes in the internal stress of these films due to the moisture sorption were studied. It was demonstrated that the stress-relaxation of the films increases at increasing moisture content. At the point when there is a definite loss of stress in the film, which is at moisture content higher than 6%, was shown to correlate with the significant increase of the moisture diffusivity. Further investigations revealed that the loss of stress is especially due to the swelling of the polymer rather than the changes in the inherent strain (the quotient between the tensile strength and the modulus of elasticity) of the HPMC films. This implies that the impact of the moisture sorption on the diffusivity is predominantly via volume addition rather than via altering the mechanical properties. Additionally, the approach presented here also brings up a new application of the internal stress concept, which in essence suggests the possibility to estimate the diffusion coefficient from the sorption isotherm and the mechanical analysis data. © American Association of Pharmaceutical Scientists 2008.

Topics
  • impedance spectroscopy
  • polymer
  • strength
  • elasticity
  • tensile strength
  • diffusivity