People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lucio-Martínez, J. L.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
booksection
Novel dielectric nanoparticles (DNP) doped nano-engineered glass based optical fiber for fiber laser
Abstract
We have developed the technology for making of dielectric nano-particles (DNP) doped nano-engineered glass based optical fibers. Two kinds of DNP containing silica glass based Yb<sub>2</sub>O<sub>3</sub> doped fibers are made successfully through solution doping (SD) technique. One: Yb<sub>2</sub>O<sub>3</sub> doped yttria-rich alumino-silica nano-particles based optical fiber developed during drawing of D-shaped low RI resin coated large mode area (LMA) optical fiber from the modified preform which annealed at 1450-1550°C for 3 hours under heating and cooling rates of 20ºC/min and other: Yb<sub>2</sub>O<sub>3</sub> doped zirconia-germanium-alumino (ZGA) rich yttria-silica nano-particles based optical fibers developed during drawing of normal RI coated single mode optical fiber from the modified preform which annealed at 1000-1100°C for 3 hr under heating and cooling rates of 20°C/min. Fabrication of Yb<sub>2</sub>O3 doped yttria-rich alumino-silica nano-particles based D-shaped low RI coated large core optical fibers having core diameter around 20.0-30.0 micron was made. The size of DNP nano-particles was maintained within 5-10 nm under doping of 0.20 mole% of fluorine. The start fiber preforms are studied by means of EPMA, EDX, and electron diffraction analyses, revealing phase-separated nano-sized ytterbium-rich areas in their cores. There is a great need to engineer the composition as well as doping levels of different elements within the core glass during the preform making stages to generate phase-separated Yb<sub>2</sub>O<sub>3</sub> doped DNP nano particles in the fiber. The matter concentrates on making of Yb<sub>2</sub>O<sub>3</sub> doped DNP containing optical fibers along with material characterizations, study of spectroscopic properties, photo-darkening phenomena, and lasing characteristics. Such kind of nano-engineered glass based optical fibers shows good lasing efficiency with improved photodarkening (PD) phenomena compared to the standard silica glass based optical fibers.