Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bansal, Ashish

  • Google
  • 1
  • 3
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Static and dynamic behavior analysis of Al-6063 alloy using modified Hopkinson bar10citations

Places of action

Chart of shared publication
Sharma, Vipin Kumar
1 / 2 shared
Bhardwaj, Harsh Kumar
1 / 1 shared
Kumar, Ashwani
1 / 8 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Sharma, Vipin Kumar
  • Bhardwaj, Harsh Kumar
  • Kumar, Ashwani
OrganizationsLocationPeople

booksection

Static and dynamic behavior analysis of Al-6063 alloy using modified Hopkinson bar

  • Sharma, Vipin Kumar
  • Bhardwaj, Harsh Kumar
  • Bansal, Ashish
  • Kumar, Ashwani
Abstract

Earlier, many experiments have been performed by researchers on specimens under quasi-static and dynamic conditions to determine the material property, stress-strain behavior and strain rate-time, etc. But there is no standard method that exists to calculate material property in dynamic conditions. In most experiments, the strain gauges were pasted on the specimen and the strains and corresponding stress were obtained. Our objective is to determine strain rate vs time curve for static as well as dynamic loading of the specimen. Dynamic tests are performed on the Split Hopkinson pressure bar to evaluate micro-strain vs time curve by the method of strain gauges. Strain gauges were mounted on the Hopkinson bar and signals of the strain gauges were acquired by a high-speed data acquisition system. The dynamic experiments were conducted by launching the projectile from the pressured chamber through a poppet valve along a long barrel. Compressed air inside the chamber is filled with the help of a storage tank through a control panel. A pulse shaper was placed between the projectile and the Hopkinson bar to give a smoother incident pulse.Keywords: Split Hopkinson pressure bar, Dynamic compression, Impact load.

Topics
  • impedance spectroscopy
  • experiment
  • stress-strain behavior