People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kashani, Mohammad Mehdi
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Seismic performance of resilient self-centering bridge piers equipped with SMA barscitations
- 2024Modeling nonlinear stress strain behaviour of 6000 series aluminum alloys under cyclic loadingcitations
- 2024Testing and numerical modelling of circular stainless steel reinforced concrete columnscitations
- 2024Inelastic buckling of reinforcing bars: a state-of-the-art review of existing models and opportunities for future researchcitations
- 2024On the use of aluminium alloys in sustainable design, construction, and rehabilitation of bridges: emerging applications and future opportunitiescitations
- 2023Monitoring seismic damage via Accelerometer data alone using Volterra series and genetic algorithm
- 2023Impact of as-recorded mainshock-aftershock excitations on seismic fragility of corrosion-damaged RC framescitations
- 2023Monotonic and cyclic behaviour of 6082-T6 aluminium alloycitations
- 2023Modelling nonlinear dynamic behaviour of rocking bridge piers with shape memory alloyscitations
- 2022Influence of ground motion type on nonlinear seismic behaviour and fragility of corrosion-damaged reinforced concrete bridge pierscitations
- 2022Seismic Performance of Precast Post-Tensioned Segmental Bridge Piers with Shape Memory Alloy (SMA) Bars
- 2021Compressive stress-strain behaviour of stainless steel reinforcing bars with the effect of inelastic bucklingcitations
- 2019Influence of bar diameter on low-cycle fatigue degradation of reinforcing barscitations
- 2018Probabilistic seismic vulnerability analysis of corroded reinforced concrete frames including spatial variability of pitting corrosioncitations
- 2017Size effect on inelastic buckling behaviour of accelerated pitted corroded bars in porous mediacitations
- 2016Assessment of U-type wrought iron railway bridgescitations
- 2016A multi-mechanical nonlinear fibre beam-column model for corroded columnscitations
Places of action
Organizations | Location | People |
---|
document
Impact of as-recorded mainshock-aftershock excitations on seismic fragility of corrosion-damaged RC frames
Abstract
<p>The experience from the past seismic events shows that the accumulated damage induced by the previous earthquakes increases the vulnerability of Reinforced Concrete (RC) structures. Moreover, RC structures constructed in aggressive environments such as those located in the coastal area suffer from the ageing and degradation phenomena. Therefore, the concurrent influence of successive seismic hazards and corrosion-induced degradation might result in undesired seismic failure of these RC structures. From this perspective, this paper investigates the seismic performance of RC frames affected by chloride-induced corrosion of reinforcements subject to as-recorded (real) mainshock-aftershock excitations. To this end, a prototype RC frame is analysed under real mainshock-aftershock ground motions at different times since corrosion initiation. First, a suite of mainshock-aftershock records is selected from a unique database using the Conditional Mean Spectrum (CMS) methodology. Then, an advanced numerical model capable of tracking the low-cycle fatigue degradation and inelastic buckling of reinforcements is used to simulate the nonlinear dynamic behaviour of the studied frames with different levels of corrosion. Finally, the seismic performance and fragility of the considered structures are evaluated using the outputs of nonlinear static and incremental dynamic analyses. The results show that the vulnerability of corroded reinforced concrete frames is significantly increased under successive earthquake events. Moreover, the results of this paper show that the probability of failure of corrosiondamaged RC frames depends crucially on the magnitude of the aftershocks.</p>