People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vishnyakov, Vm
University of Huddersfield
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (30/30 displayed)
- 2022Reactively sintered TiB2-based heteromodulus UHT ceramics with in-situ formed graphene for machinable concentrated solar light absorberscitations
- 2022High Densification of Tungsten via Hot Pressing at 1300 °C in Carbon Presencecitations
- 2022Reaction Sintering of Biocompatible Al2O3-hBN Ceramicscitations
- 2022Reaction Sintering of Machinable TiB2-BN-C Ceramics with In-Situ Formed h-BN Nanostructurecitations
- 2021Integrated Nanomechanical Characterisation of Hard Coatingscitations
- 2021Thermal conductivity and thermal shock resistance of TiB2-based UHTCs enhanced by graphite plateletscitations
- 2021Corrosion performance and mechanical properties of FeCrSiNb amorphous equiatomic HEA thin filmcitations
- 2021Deviating from the pure MAX phase conceptcitations
- 2021Single-phase FeMnNiAl compositionally complex alloycitations
- 2020Demanding applications in harsh environment–FeCrMnNiC amorphous equiatomic alloy thin filmcitations
- 2020Reactive hot pressing route for dense ZrB2-SiC and ZrB2-SiC-CNT ultra-high temperature ceramicscitations
- 2020Effect of aluminium concentration on phase formation and radiation stability of Cr2Al x C thin filmcitations
- 2019Mechanisms of TiB2 and graphite nucleation during TiC–B4C high temperature interactioncitations
- 2019Reactive sintering of TiB2-SiC-CNT ceramicscitations
- 2018Synthesis and characterisation of high-entropy alloy thin films as candidates for coating nuclear fuel cladding alloyscitations
- 2018Use of ion-assisted sputtering technique for producing photocatalytic titanium dioxide thin filmscitations
- 2017Structure formation of TiB2-TiC-B4C-C hetero-modulus ceramics via reaction hot pressingcitations
- 2017Nano-scratch testing of (Ti,Fe)Nx thin films on siliconcitations
- 2017Fracture toughness in some hetero-modulus composite carbidescitations
- 2015Development of DLC coating architectures for demanding functional surface applications through nano- and micro-mechanical testingcitations
- 2015Interface Dynamics in Strained Polymer Nanocompositescitations
- 2013Ti3SiC2-formation during Ti-C-Si multilayer deposition by magnetron sputtering at 650°ccitations
- 2013Nanoscale Friction Measurements Up to 750 °Ccitations
- 2011Amorphous boron containing silicon carbo-nitrides created by ion sputteringcitations
- 2011Photocatalytic activity of reactively sputtered and directly sputtered titania coatingscitations
- 2010Physicomechanical properties of ultrahigh temperature heteromodulus ceramics based on group 4 transition metal carbidescitations
- 2010Comparison of Ti-Zr-V nonevaporable getter films deposited using alloy or twisted wire sputter-targetscitations
- 2006Single ion-induced amorphous zones in silicon
- 2006Influence of mechanical properties on the nanoscratch behaviour of hard nanocomposite TiN/Si3N4 coatings on Sicitations
- 2005Study of nanocrystalline TiN/Si3N4 thin films deposited using a dual ion beam methodcitations
Places of action
Organizations | Location | People |
---|
booksection
Integrated Nanomechanical Characterisation of Hard Coatings
Abstract
Advanced nanomechanical and nano/microtribological tests combined with simulated stress distributions help understand performance in tribological applications and to design coating systems for enhanced performance. Detailed simulated stress distributions enable data to be interpreted more effectively, providing mechanistic information to explain where and why coating systems fail in scratch and fretting tests, and then to design coatings with improved performance. In this chapter the combined experimental-modelling approach is illustrated with data from a wide range of coating systems including (i) ion beam assisted Ti(Fe,N)x on silicon, (ii) multilayered hard carbon coatings on steel and (iii) nitride-based coatings on cemented carbide. In applications of hard coatings where high temperatures are generated in contact, the mechanical properties determined at room temperature may be less relevant than those measured in high-temperature tests. High temperature coating nanomechanical tests can be complemented by nano-tribological tests. These provide severe tests for coatings that simulate high contact pressure sliding/abrasive contacts at elevated temperature. Analytical modelling shows that coating behaviour in the high-temperature test can be explained by temperature-dependent changes to the stress distribution in the highly loaded sliding contact.