People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Veer, Frederic
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2024New insights into the interpretation of the results of four point bending tests on float glasscitations
- 2023A Novel Method for the Non-Destructive Assessment of Strength Degradation and Re-Use Potential of Weathered Float Glass From Facadescitations
- 2022Effects of composition on the durability and weathering of flat glasscitations
- 2021Thermal, optical and mechanical properties of new glass compositions containing fly ash
- 2021On the flexural strength and stiffness of cast glasscitations
- 2020The Application of Waste Float Glass, Recycled in Structural Beams made with the Glass Casting Methodcitations
- 2020Investigating the flexural strength of recycled cast glasscitations
- 2019Dry interlayers out of cast polyurethane rubber for interlocking cast glass structures
- 2019Limestone and Calcined Clay-Based Sustainable Cementitious Materials for 3D Concrete Printingcitations
- 2019Feasibility of Using Low CO2 Concrete Alternatives in Extrusion-Based 3D Concrete Printingcitations
- 2019The Effect of Viscosity-Modifying Admixture on the Extrudability of Limestone and Calcined Clay-Based Cementitious Material for Extrusion-Based 3D Concrete Printingcitations
- 2019The effect of manufacturing flaws in the meso-structure of cast glass on the structural performancecitations
- 2018Interlocking cast glass components, Exploring a demountable dry-assembly structural glass system
- 2018Innovative Glass Recipes Containing Industrial Waste Materials
- 2018New phosphate glasses containing industrial waste and their applications for building engineering
- 2018Structural Strength of Laminated Glasscitations
- 2018Design and Experimental Testing of All Glass Sandwich Panelscitations
- 2018An overview of some recent developments in glass science and their relevance to quality control in the glass industry
- 2018A Re-evaluation of the Physiochemistry of Glass on the Basis of Recent Developments and its Relevance to the Glass Industrycitations
- 2018A Novel, Demountable Structural Glass System Out of Dry-Assembly, Interlocking Cast Glass Componentscitations
- 2017Design and experimental testing of the bundled glass columncitations
- 2017Production and Testing of Kiln-cast Glass Components for an Interlocking, Dry-assembled Transparent Bridge
- 2017Engineering the bundled glass column: From the design concept to full-scale experimental testing
- 2016Developing the bundled glass columncitations
- 2016Improving the engineering strength of heat strengthened glass
Places of action
Organizations | Location | People |
---|
document
Dry interlayers out of cast polyurethane rubber for interlocking cast glass structures
Abstract
A novel, reversible structural system comprising interlocking, dry-assembled cast glass components is currently being developed at the TU Delft Glass & Transparency Lab. This paper, in continuation of the research conducted by (Oikonomopoulou et al. 2018a), investigates the mechanical properties of different materials that function as dry interlayers for interlocking cast glass structures. The interlayers should be preferably transparent, able to be pre-formed to the desired shapes, and resistant to UV-radiation-induced colour shifts, long-term compressive loads and creep. Based on the above criteria, polyurethane (PU) rubber with a shore hardness between 60A - 80A is chosen as the most suitable material. Accordingly, different readily available PU interlayers are selected and cast in the desired shape. Each interlayer is introduced between two interlocking osteomorphic cast glass components (bricks) and the assembly is tested under compression in series of 3 specimens. The experiments indicate that for the harder interlayer variants, failure mainly occurs due to peak stresses occurring at the shortest section of the brick, where the manufacturing tolerances of the concave-convex surface are the highest, leading to mismatch, i.e. incomplete contact at that area of the interlayer with the glass units. The stiffer interlayers further contribute to the failure due to the increased shear stresses induced at the edges of the interlocking surface while they are deforming. This is evident by the radial breaking pattern of the failed glass blocks. Interlayer variants with low tear resistance fail due to the perforation of the interlayer leading to glass-to-glass contact. Still, all specimens with interlayer in between presented a considerably higher failure stress than an assembly with no interlayer, highlighting the critical contribution of the PU to the structural performance of the system.