People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Binley, Andrew
Lancaster University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2021A linked geomorphological and geophysical modelling methodology applied to an active landslidecitations
- 2019Monitoring redox sensitive conditions at the groundwater interface using electrical resistivity and self-potentialcitations
- 2019Laboratory spectral induced polarisation signatures associated with iron and manganese oxide dissolution because of anaerobic degradationcitations
- 2019Geoelectrical signatures of redox processes
- 2015Self-potential monitoring of the enhanced biodegradation of an organic contaminant using a bioelectrochemical cellcitations
- 2015Anomalous solute transport in saturated porous mediacitations
- 2015Anomalous solute transport in saturated porous media : linking transport model parameters to electrical and nuclear magnetic resonance properties
- 2013Laboratory SIP signatures associated with oxidation of disseminated metal sulphidescitations
- 2012A stochastic analysis of cross-hole ground-penetrating rada zero-offset profiles for subsurface characterizationcitations
- 2006Improved hydrogeophysical characterization using joint inversion of cross-hole electrical resistance and ground-penetrating radar traveltime data.citations
- 2005Electrical properties of partially saturated sandstones.
Places of action
Organizations | Location | People |
---|
article
Self-potential monitoring of the enhanced biodegradation of an organic contaminant using a bioelectrochemical cell
Abstract
A bioelectrochemical system was developed to facilitate biodegradation of an organic contaminant (propylene glycol) using a sandbox containing an iron bar that crossed the capillary fringe. In the days following the introduction of the organic contaminant, a strong negative electric potential anomaly (on the order of –35 to 50 mV) was observed at the top surface of the sandbox, evidencing the transport of electrons in the metallic bar and the degradation of the organic contaminant. The iron bar served to transmit electrons between the electron donor (i.e., biodegradation of the propylene glycol) and oxygen used as the terminal electron acceptor. Numerical modeling indicates that the source of current associated with the electric potential anomaly is at the position of the iron bar. The monitoring of this anomaly possibly can be used to monitor the amount of electrons passing through the electronic conductor and the radius of influence of the bioelectrochemical cells with respect to biodegradation of the organic contaminant.