Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nordgard-Bolas, Hege

  • Google
  • 1
  • 3
  • 88

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2011Geomechanical and Ultrasonic Characterisation of a Norwegian Sea Shale88citations

Places of action

Chart of shared publication
Siggins, Anthony
1 / 2 shared
Raven, Mark
1 / 6 shared
Sarout, Joel
1 / 7 shared
Chart of publication period
2011

Co-Authors (by relevance)

  • Siggins, Anthony
  • Raven, Mark
  • Sarout, Joel
OrganizationsLocationPeople

article

Geomechanical and Ultrasonic Characterisation of a Norwegian Sea Shale

  • Siggins, Anthony
  • Raven, Mark
  • Nordgard-Bolas, Hege
  • Sarout, Joel
Abstract

Multiple stage triaxial tests were performed upon horizontal core plugs of a shale from the Norwegian Sea with a view to evaluating rock strength and the evolution of ultrasonic response during rock deformation. In addition, standard rock physical properties were characterised as well as composition (kaolinite and quartz dominant). The shale has low friction coefficient and cohesive strength and shows moderate strength anisotropy. The main aim of the work was to evaluate the dynamic elastic response of shales to the application of anisotropic stress fields and specifically the impact on velocity and its anisotropy. The latter two are directly related to both the preferred orientation of minerals in the shale and microcracks parallel to this compaction fabric. The orientation of the maximum principal stress parallel to the intrinsic fabric and microcracks was seen to significantly impact on velocity normal to the fabric as stress parallel to the fabric increased. S-wave anisotropy was significantly affected by the increasing stress anisotropy. Stress orientation with respect to fabric orientation was therefore shown to be an important control on the degree of anisotropy of dynamic elastic properties in this shale.

Topics
  • mineral
  • strength
  • anisotropic
  • ultrasonic