People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fabricius, Ida Lykke
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2022Strain modeling in a marly chalk reservoir
- 2022Effect of Pyrite in Water Saturation Evaluation of Clay-Rich Carbonatecitations
- 2020Porosity in chalk – roles of elastic strain and plastic straincitations
- 2019Influence of temperature cycling and pore fluid on tensile strength of chalkcitations
- 2017Low-Field NMR Spectrometry of Chalk and Argillaceous Sandstones: Rock-Fluid Affinity Assessed from T-1/T-2 Ratio
- 2016Wettability of Chalk and Argillaceous Sandstones Assessed from T1/T2 Ratio
- 2014Burial stress and elastic strain of carbonate rockscitations
- 2011Petrophysical properties of greensand as predicted from NMR measurementscitations
- 2010Biot Critical Frequency Applied to Description of Failure and Yield of Highly Porous Chalk with Different Pore Fluidscitations
- 2008Chalk porosity and sonic velocity versus burial depthcitations
- 2007Elastic behaviour of North Sea chalkcitations
- 2000BET measurements: Outgassing of mineralscitations
Places of action
Organizations | Location | People |
---|
article
Biot Critical Frequency Applied to Description of Failure and Yield of Highly Porous Chalk with Different Pore Fluids
Abstract
Injection of water into chalk hydrocarbon reservoirs has led to mechanical yield and failure. Laboratory experiments on chalk samples correspondingly show that the mechanical properties of porous chalk depend on pore fluid and temperature. In case of water-saturated samples, the concentration and nature of dissolved salts have an effect.Water has a significant softening effect on elastic properties of chalk as calculated from wave data, and the softening increases with increasing critical frequency as defined by Biot. The critical frequency is the highest frequency where elastic wave propagation is controlled by solid-fluid friction. The reference frequency is thus a measure of this friction, and we propose that the fluid effect on mechanical properties of chalk may be the result of liquid-solid friction. We reviewed 622 published experiments on mechanical properties of porous chalk. The data include chalk samples that were tested at temperatures from 20 °C to 130 °C with the following pore fluids: fresh water, synthetic seawater, glycol, and oil of varying viscosity. The critical frequency is calculated for each experiment. For each specimen, we calculate the thickness to the slipping plane outside the Stern layer on the pore surface. For electrolytes, the thickness of this layer is calculated based on Debye-Hückel theory. The layer reduces the porosity available for fluid flow.We find that the Biot critical frequency based on pore scale data can be used to explain effects on the macro scale.We find that the effective yield stress and also the effective stress of failure in tension as well as in compression are log-linearly related to log reference frequency. This opens the possibility to predict yield and failure under reservoir conditions from mechanical tests made under laboratory conditions. It also opens the possibility of predicting the effects of water flooding on chalk stability.