Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Herrera, Diana A. Garza

  • Google
  • 1
  • 4
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Unveiling the potential of bacterial isolates from plastic-polluted environments: enhancement of polyhydroxybutyrate biodegradation1citations

Places of action

Chart of shared publication
Mojicevic, Marija
1 / 4 shared
Venkatesh, Chaitra
1 / 4 shared
Brennan-Fournet, Margaret
1 / 1 shared
Pereira, E. Henrique Da Silva
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Mojicevic, Marija
  • Venkatesh, Chaitra
  • Brennan-Fournet, Margaret
  • Pereira, E. Henrique Da Silva
OrganizationsLocationPeople

article

Unveiling the potential of bacterial isolates from plastic-polluted environments: enhancement of polyhydroxybutyrate biodegradation

  • Mojicevic, Marija
  • Herrera, Diana A. Garza
  • Venkatesh, Chaitra
  • Brennan-Fournet, Margaret
  • Pereira, E. Henrique Da Silva
Abstract

<jats:title>Abstract</jats:title><jats:p>This study explores the biodegradation potential of microbial isolates focusing on their ability to utilize biopolymers as sole carbon source. Previously described isolates have been investigated through agar-based screen for the ability to degrade plastic-related substrates in powder form, and four strains have been selected for further assessment. Polyhydroxybutyrate (PHB) films degradation was examined through liquid culture, soil burial, and respirometry assays. Structural and chemical alterations in PHB were analysed using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The most successful strains were tested for the ability to degrade PHB/bacterial nanocellulose (BNC) blends. <jats:italic>Bacillus</jats:italic> sp. DG90 excelled in PHB degradation, achieving 60% weight loss in liquid culture, while <jats:italic>Streptomyces</jats:italic> sp. DG19 exhibited a notable degradation rate of 51 ± 1.7%. Soil burial assays underscored the impact of environmental factors on degradation rates, emphasizing the role of soil composition and nitrogen availability. In respirometry assay, PHB films were severely defragmented by <jats:italic>Streptomyces</jats:italic> sp. DG19 with overall weight loss of 83%, while for <jats:italic>Bacillus</jats:italic> sp. DG90, this percentage reached 39%. FTIR and DSC analyses suggested potential hydrolysis and structural alterations in treated samples. This study observed rapid PHB degradation (83% in 3 weeks) while, considering the complex composition of modern biomaterials, also showcased the potential of examined strains to degrade PHB-BNC blends up to 85%. </jats:p>

Topics
  • polymer
  • Carbon
  • scanning electron microscopy
  • Nitrogen
  • differential scanning calorimetry
  • biomaterials
  • infrared spectroscopy