Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Windhager, R.

  • Google
  • 1
  • 10
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Dimensional accuracy and precision and surgeon perception of additively manufactured bone models: effect of manufacturing technology and part orientation.6citations

Places of action

Chart of shared publication
Hirtler, L.
1 / 1 shared
Unger, E.
1 / 8 shared
Gahleitner, C.
1 / 1 shared
Gm, Hobusch
1 / 1 shared
Strassl, A.
1 / 1 shared
Bittner-Frank, M.
1 / 1 shared
Eckhart, B.
1 / 1 shared
Moscato, F.
1 / 1 shared
Benca, E.
1 / 1 shared
Stoegner, Alexander
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Hirtler, L.
  • Unger, E.
  • Gahleitner, C.
  • Gm, Hobusch
  • Strassl, A.
  • Bittner-Frank, M.
  • Eckhart, B.
  • Moscato, F.
  • Benca, E.
  • Stoegner, Alexander
OrganizationsLocationPeople

article

Dimensional accuracy and precision and surgeon perception of additively manufactured bone models: effect of manufacturing technology and part orientation.

  • Hirtler, L.
  • Unger, E.
  • Gahleitner, C.
  • Gm, Hobusch
  • Windhager, R.
  • Strassl, A.
  • Bittner-Frank, M.
  • Eckhart, B.
  • Moscato, F.
  • Benca, E.
  • Stoegner, Alexander
Abstract

<h4>Background</h4>Additively manufactured (AM) anatomical bone models are primarily utilized for training and preoperative planning purposes. As such, they must meet stringent requirements, with dimensional accuracy being of utmost importance. This study aimed to evaluate the precision and accuracy of anatomical bone models manufactured using three different AM technologies: digital light processing (DLP), fused deposition modeling (FDM), and PolyJetting (PJ), built in three different part orientations. Additionally, the study sought to assess surgeons' perceptions of how well these models mimic real bones in simulated osteosynthesis.<h4>Methods</h4>Computer-aided design (CAD) models of six human radii were generated from computed tomography (CT) imaging data. Anatomical models were then manufactured using the three aforementioned technologies and in three different part orientations. The surfaces of all models were 3D-scanned and compared with the original CAD models. Furthermore, an anatomical model of a proximal femur including a metastatic lesion was manufactured using the three technologies, followed by (mock) osteosynthesis performed by six surgeons on each type of model. The surgeons' perceptions of the quality and haptic properties of each model were assessed using a questionnaire.<h4>Results</h4>The mean dimensional deviations from the original CAD model ranged between 0.00 and 0.13 mm with maximal inaccuracies < 1 mm for all models. In surgical simulation, PJ models achieved the highest total score on a 5-point Likert scale ranging from 1 to 5 (with 1 and 5 representing the lowest and highest level of agreement, respectively), (3.74 ± 0.99) in the surgeons' perception assessment, followed by DLP (3.41 ± 0.99) and FDM (2.43 ± 1.02). Notably, FDM was perceived as unsuitable for surgical simulation, as the material melted during drilling and sawing.<h4>Conclusions</h4>In conclusion, the choice of technology and part orientation significantly influenced the accuracy and precision of additively manufactured bone models. However, all anatomical models showed satisfying accuracies and precisions, independent of the AM technology or part orientation. The anatomical and functional performance of FDM models was rated by surgeons as poor.

Topics
  • Deposition
  • surface
  • simulation
  • tomography
  • additive manufacturing
  • collision-induced dissociation