Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mamun, Md Abdullah Al

  • Google
  • 1
  • 2
  • 51

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017Ecological risk assessment and health safety speculation during color fastness properties enhancement of natural dyed cotton through metallic mordants51citations

Places of action

Chart of shared publication
Islam, M. Tauhidul
1 / 1 shared
Repon, Md. Reazuddin
1 / 12 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Islam, M. Tauhidul
  • Repon, Md. Reazuddin
OrganizationsLocationPeople

article

Ecological risk assessment and health safety speculation during color fastness properties enhancement of natural dyed cotton through metallic mordants

  • Islam, M. Tauhidul
  • Repon, Md. Reazuddin
  • Mamun, Md Abdullah Al
Abstract

<p>Variety and durability of color are presumed as key constrains of natural dyes. So, this study attempts to investigate the effect of metallic mordants on the color fastness properties of ecologically dyed cotton fabric using banana floral stem sap. Color difference was measured in terms of hue (ΔH*), chroma (ΔL*) and value (ΔC*) difference. Metal ions in residual mordanting bath, dyeing wastewater and level of trace metals in the finished fabric surface were accessed to justify the environmental safety and speculate the health risk respectively. Pre-mordanted specimens were dyed at 100 °C for 60 min. Optical properties of extracted sap were observed by UV visible spectroscopy. Dye fixation with fiber was determined by FTIR-ATR spectra. Atomic absorption spectroscopy was employed to determine the trace metals in finished fabric. Effect of metallic mordants were calculated in terms of color fastness to wash, water, perspiration, rubbing and light for estimating the color durability. Except light fastness property almost all color fastness values were 4/5, i.e. very good. Light fastness properties were improved for mordanting action with metallic salts. The level of trace metals in finished fabric were within the safe zone.[Figure not available: see fulltext.].</p>

Topics
  • surface
  • durability
  • spectroscopy