Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Richters, Constanze

  • Google
  • 1
  • 5
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Who is on the right track? Behavior-based prediction of diagnostic success in a collaborative diagnostic reasoning simulation5citations

Places of action

Chart of shared publication
Stadler, Matthias
1 / 1 shared
Fischer, Frank
1 / 8 shared
Radkowitsch, Anika
1 / 1 shared
Fischer, Martin R.
1 / 2 shared
Schmidmaier, Ralf
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Stadler, Matthias
  • Fischer, Frank
  • Radkowitsch, Anika
  • Fischer, Martin R.
  • Schmidmaier, Ralf
OrganizationsLocationPeople

article

Who is on the right track? Behavior-based prediction of diagnostic success in a collaborative diagnostic reasoning simulation

  • Stadler, Matthias
  • Fischer, Frank
  • Radkowitsch, Anika
  • Richters, Constanze
  • Fischer, Martin R.
  • Schmidmaier, Ralf
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Making accurate diagnoses in teams requires complex collaborative diagnostic reasoning skills, which require extensive training. In this study, we investigated broad content-independent behavioral indicators of diagnostic accuracy and checked whether and how quickly diagnostic accuracy could be predicted from these behavioral indicators when they were displayed in a collaborative diagnostic reasoning simulation.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>A total of 73 medical students and 25 physicians were asked to diagnose patient cases in a medical training simulation with the help of an agent-based radiologist. Log files were automatically coded for collaborative diagnostic activities (CDAs; i.e., evidence generation, sharing and eliciting of evidence and hypotheses, drawing conclusions). These codes were transformed into bigrams that contained information about the time spent on and transitions between CDAs. Support vector machines with linear kernels, random forests, and gradient boosting machines were trained to classify whether a diagnostician could provide the correct diagnosis on the basis of the CDAs.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>All algorithms performed well in predicting diagnostic accuracy in the training and testing phases. Yet, the random forest was selected as the final model because of its better performance (kappa = .40) in the testing phase. The model predicted diagnostic success with higher precision than it predicted diagnostic failure (sensitivity = .90; specificity = .46). A reliable prediction of diagnostic successwas possible after about two thirds of the median time spent on the diagnostic task. Most important for the prediction of diagnostic accuracy was the time spent on certain individual activities, such as evidence generation (typical for accurate diagnoses), and collaborative activities, such as sharing and eliciting evidence (typical for inaccurate diagnoses).</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>This study advances the understanding of differences in the collaborative diagnostic reasoning processes of successful and unsuccessful diagnosticians. Taking time to generate evidence at the beginning of the diagnostic task can help build an initial adequate representation of the diagnostic case that prestructures subsequent collaborative activities and is crucial for making accurate diagnoses. This information could be used to provide adaptive process-based feedback on whether learners are on the right diagnostic track. Moreover, early instructional support in a diagnostic training task might help diagnosticians improve such individual diagnostic activities and prepare for effective collaboration. In addition, the ability to identify successful diagnosticians even before task completion might help adjust task difficulty to learners in real time.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • phase
  • simulation
  • random
  • size-exclusion chromatography
  • drawing