Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Boutrid, Abdelaziz

  • Google
  • 1
  • 4
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023New Anchorage Technique for GFRP Flexural Strengthening of Concrete Beams Using Bolts-End Anchoring System4citations

Places of action

Chart of shared publication
Bouzid, Tayeb
1 / 1 shared
Saadi, Mohamed
1 / 7 shared
Yahiaoui, Djarir
1 / 1 shared
Mamen, Belgacem
1 / 4 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Bouzid, Tayeb
  • Saadi, Mohamed
  • Yahiaoui, Djarir
  • Mamen, Belgacem
OrganizationsLocationPeople

article

New Anchorage Technique for GFRP Flexural Strengthening of Concrete Beams Using Bolts-End Anchoring System

  • Bouzid, Tayeb
  • Saadi, Mohamed
  • Yahiaoui, Djarir
  • Mamen, Belgacem
  • Boutrid, Abdelaziz
Abstract

<jats:title>Abstract</jats:title><jats:p>The concept of external glass FRP composite confinement is a current process for strengthening concrete beams subjected to static loads. End anchorage glass FRP composites of 80 mm width and 90–130 mm length with different thicknesses (2.4 and 4.8 mm) have been fixed at the bottom of beams with bolts of various diameters (6 and 10 mm). For this purpose, the behavior of beams strengthened with bolt-end anchoring glass fiber polymer composites (BEGFPC) has been analyzed. It is concluded that the load capacity of the BEGFPC beams is improved by increasing the end-anchorage glass FRP composite thickness (about 98–188%). In addition, the BEGFPC system with bolts of 6 mm diameter has significantly improved the flexibility of beams. In contrast, the 10 mm bolts in diameter give a high ultimate load, whatever their quantity. Therefore, combining bolts with diameters of 6 and 10 mm would be the best solution for increasing the ultimate load and ductility of the retrofitted beams. Depending on the number and bolts' arrangement, there is also an enhancement in the crack patterns by changing from intermediate flexural failure to shear failure in beams.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • glass
  • glass
  • crack
  • composite
  • ductility