Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Marjamaa, Kaisa

  • Google
  • 2
  • 18
  • 156

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Insights into the action of phylogenetically diverse microbial expansins on the structure of cellulose microfibrils5citations
  • 2013Cellulase-lignin interactions151citations

Places of action

Chart of shared publication
Turunen, Rosaliina
1 / 1 shared
Master, Emma R.
1 / 2 shared
Jäämuru, Vilma
1 / 1 shared
Momeni, Majid Haddad
1 / 1 shared
Penttilä, Paavo A.
1 / 12 shared
Zitting, Aleksi
1 / 4 shared
Koivula, Anu
1 / 1 shared
Maiorova, Natalia
1 / 1 shared
Hiltunen, Salla
1 / 1 shared
Buchko, Garry W.
1 / 1 shared
Sapkota, Janak
1 / 17 shared
Rahikainen, Jenni
1 / 2 shared
Tamminen, Tarja
1 / 10 shared
Evans, James David
1 / 1 shared
Kalliola, Anna
1 / 6 shared
Mikander, Saara
1 / 1 shared
Kruus, Kristiina
1 / 4 shared
Puranen, Terhi
1 / 1 shared
Chart of publication period
2024
2013

Co-Authors (by relevance)

  • Turunen, Rosaliina
  • Master, Emma R.
  • Jäämuru, Vilma
  • Momeni, Majid Haddad
  • Penttilä, Paavo A.
  • Zitting, Aleksi
  • Koivula, Anu
  • Maiorova, Natalia
  • Hiltunen, Salla
  • Buchko, Garry W.
  • Sapkota, Janak
  • Rahikainen, Jenni
  • Tamminen, Tarja
  • Evans, James David
  • Kalliola, Anna
  • Mikander, Saara
  • Kruus, Kristiina
  • Puranen, Terhi
OrganizationsLocationPeople

article

Insights into the action of phylogenetically diverse microbial expansins on the structure of cellulose microfibrils

  • Turunen, Rosaliina
  • Master, Emma R.
  • Jäämuru, Vilma
  • Momeni, Majid Haddad
  • Penttilä, Paavo A.
  • Zitting, Aleksi
  • Marjamaa, Kaisa
  • Koivula, Anu
  • Maiorova, Natalia
  • Hiltunen, Salla
  • Buchko, Garry W.
  • Sapkota, Janak
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Microbial expansins (EXLXs) are non-lytic proteins homologous to plant expansins involved in plant cell wall formation. Due to their non-lytic cell wall loosening properties and potential to disaggregate cellulosic structures, there is considerable interest in exploring the ability of microbial expansins (EXLX) to assist the processing of cellulosic biomass for broader biotechnological applications. Herein, EXLXs with different modular structure and from diverse phylogenetic origin were compared in terms of ability to bind cellulosic, xylosic, and chitinous substrates, to structurally modify cellulosic fibrils, and to boost enzymatic deconstruction of hardwood pulp.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>Five heterogeneously produced EXLXs (<jats:italic>Clavibacter michiganensis; Cmi</jats:italic>EXLX2, <jats:italic>Dickeya aquatica; Daq</jats:italic>EXLX1, <jats:italic>Xanthomonas sacchari; Xsa</jats:italic>EXLX1, <jats:italic>Nothophytophthora sp.; Nsp</jats:italic>EXLX1 and <jats:italic>Phytophthora cactorum; Pca</jats:italic>EXLX1) were shown to bind xylan and hardwood pulp at pH 5.5 and <jats:italic>Cmi</jats:italic>EXLX2 (harboring a family-2 carbohydrate-binding module) also bound well to crystalline cellulose. Small-angle X-ray scattering revealed a 20–25% increase in interfibrillar distance between neighboring cellulose microfibrils following treatment with <jats:italic>Cmi</jats:italic>EXLX2, <jats:italic>Daq</jats:italic>EXLX1, or <jats:italic>Nsp</jats:italic>EXLX1. Correspondingly, combining xylanase with <jats:italic>Cmi</jats:italic>EXLX2 and <jats:italic>Daq</jats:italic>EXLX1 increased product yield from hardwood pulp by ~ 25%, while supplementing the <jats:italic>Tr</jats:italic>AA9A LPMO from <jats:italic>Trichoderma reesei</jats:italic> with <jats:italic>Cmi</jats:italic>EXLX2, <jats:italic>Daq</jats:italic>EXLX1, and <jats:italic>Nsp</jats:italic>EXLX1 increased total product yield by over 35%.</jats:p></jats:sec><jats:sec><jats:title>Conclusion</jats:title><jats:p>This direct comparison of diverse EXLXs revealed consistent impacts on interfibrillar spacing of cellulose microfibers and performance of carbohydrate-active enzymes predicted to act on fiber surfaces. These findings uncover new possibilities to employ EXLXs in the creation of value-added materials from cellulosic biomass.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • surface
  • cellulose
  • size-exclusion chromatography
  • X-ray scattering