Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chen, Qiaomin

  • Google
  • 1
  • 4
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Prediction accuracy and repeatability of UAV based biomass estimation in wheat variety trials as affected by variable type, modelling strategy and sampling location1citations

Places of action

Chart of shared publication
Massey-Reed, Sean Reynolds
1 / 1 shared
Smith, Daniel
1 / 3 shared
Chapman, Scott C.
1 / 1 shared
Potgieter, Andries B.
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Massey-Reed, Sean Reynolds
  • Smith, Daniel
  • Chapman, Scott C.
  • Potgieter, Andries B.
OrganizationsLocationPeople

article

Prediction accuracy and repeatability of UAV based biomass estimation in wheat variety trials as affected by variable type, modelling strategy and sampling location

  • Massey-Reed, Sean Reynolds
  • Smith, Daniel
  • Chen, Qiaomin
  • Chapman, Scott C.
  • Potgieter, Andries B.
Abstract

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>This study explores the use of Unmanned Aerial Vehicles (UAVs) for estimating wheat biomass, focusing on the impact of phenotyping and analytical protocols in the context of late-stage variety selection programs. It emphasizes the importance of variable selection, model specificity, and sampling location within the experimental plot in predicting biomass, aiming to refine UAV-based estimation techniques for enhanced selection accuracy and throughput in variety testing programs.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>The research uncovered that integrating geometric and spectral traits led to an increase in prediction accuracy, whilst a recursive feature elimination (RFE) based variable selection workflowled to slight reductions in accuracy with the benefit of increased interpretability. Models, tailored to specific experiments were more accurate than those modelling all experiments together, while models trained for broad-growth stages did not significantly increase accuracy. The comparison between a permanent and a precise region of interest (ROI) within the plot showed negligible differences in biomass prediction accuracy, indicating the robustness of the approach across different sampling locations within the plot. Significant differences in the within-season repeatability (w<jats:sup>2</jats:sup>) of biomass predictions across different experiments highlighted the need for further investigation into the optimal timing of measurement for prediction.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>The study highlights the promising potential of UAV technology in biomass prediction for wheat at a small plot scale. It suggests that the accuracy of biomass predictions can be significantly improved through optimizing analytical and modelling protocols (i.e., variable selection, algorithm selection, stage-specific model development). Future work should focus on exploring the applicability of these findings under a wider variety of conditions and from a more diverse set of genotypes.</jats:p></jats:sec>

Topics
  • experiment
  • size-exclusion chromatography